
1 
 

Complexity	  and	  
Evolution	  

	  
	  

fundamental	  concepts	  of	  
	  a	  new	  scientific	  worldview	  

 
 

 

 
 
 
 

Francis Heylighen 
 
 
 

 
 
 

Lecture notes 2017-2018 



2 
 

 



3 
 

 

Preface	  

 
Over the past decades, there has been a silent revolution in science. Scientists in very 
different domains, from the physical sciences through information technology to the social 
sciences, have become increasingly aware of the shortcomings of the classical, Newtonian 
paradigm. It has become clear to them that the underlying worldview is far too static, 
simplistic and reductionist to approach complex dynamic phenomena, such as living 
organisms, brains or society. The alternative approaches are silently converging under the 
header of “complexity science”. This is a field that has not yet been clearly demarcated and 
can seem like a hodgepodge of metaphors, methods and models from a variety of disciplines 
and traditions. These different approaches nevertheless share a distinct way of thinking that 
sheds an entirely different light on old philosophical and scientific problems. It is this way of 
thinking that I aim to present in a simple and coherent manner in this book, in the form of 
what I call the “evolutionary-systemic worldview”. 
 
This book has developed out of my own research and aims to provide a synthesis of the 
different scientific (and philosophical) fields in which I work. I am a research professor at the 
Centre Leo Apostel of the Free University Brussels, where I lead a research group on 
“Evolution, complexity and cognition” and the Global Brain Institute. The goal of the centre, 
as formulated by the well-known philosopher Leo Apostel, is the transdisciplinary integration 
of the different disciplines of science and the humanities, and in particular the formulation of 
integrating worldviews. I have also been also an editor of the international Principa 
Cybernetica Project (http://pcp.vub.ac.be/), which aimed to develop a worldview that is 
specifically based on the evolution of complex systems. The research has practical 
applications, such as the development of an intelligent, self-organising web. You can find 
more information about my work on my homepage, http://pcp.vub.ac.be/HEYL.html.  
 
The content of this book reflects my personal perspective, not necessarily the scientific 
consensus. The reason for this is that the field of complexity and evolution is still largely at 
the research stage; the various ideas and approaches have not yet been systematically 
developed into a coherent theory. Several of the underlying theories (e.g. the biological 
theory of evolution) and especially several of the fundamental concepts (e.g. state space, 
feedback and fitness landscape) however have become solidly anchored into scientific 
thought. The book aims first of all to put forward these fundamental ideas in a clear and 
straightforward manner. Second, this book is a first attempt to integrate and generalise these 
ideas. 
 
The book has been arranged as a textbook which was originally used for the course 
“Complexity and evolution” that I teach to first-year students in philosophy at the Free 
University Brussels. Therefore, the book requires no specialised prior knowledge other than 
that acquired in high school. Although the field of complexity science can frequently be quite 
technical, using complicated mathematical formulas, the basic assumptions are relatively 
simple. It is these basic tenets that I have aimed to explain in a widely accessible manner, 
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however without trivialising them. This means that I explain the concepts as much as 
possible by means of concrete examples, illustrations and diagrams, and that I minimise the 
use of mathematical symbols. I consider it nevertheless necessary to provide an idea of how 
mathematics can help to represent complexity, using for example concepts such as state space 
and entropy. The mathematics required for this is however limited to elementary set theory as 
taught in secondary education. 
 
To facilitate reading for readers without a scientific background, the text contains a number 
of sections (marked with *) and paragraphs (in smaller print) that discuss less important or 
more complicated applications, and that can be skipped without a problem. It is however 
worthwhile to read these sections, since they can contribute to the understanding of the basic 
concepts. Core concepts are marked bold in the text, so as to be easily recognisable. They 
can also be found in the alphabetical index at the end of this book.  
 
 
 

Francis Heylighen 
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Chapter	  1. Worldviews	  

1.1 Fundamental	  philosophical	  questions	  

For centuries, people have asked themselves fundamental questions about their existence and 
their place in the universe. These are essentially variations on the eternal “Why?”: 
 

• Why is the universe the way it is, rather than something else? 

• Where does everything come from? 

• Who are we? 

• Where do we come from? 

• Where are we going? 

• What is the meaning of life? 
 
Using a more modern, scientific terminology, we could summarise these questions as 
follows: how and why do complex, organized systems, such as living beings, humans and 
societies, arise? In which direction are they evolving? As we will see, these questions are also 
related to the classical questions that define the traditional domains of philosophy: 
 

• What is? (ontology, metaphysics) 

• What is true and false? (epistemology) 

• What is good and what is evil? (ethics, axiology) 

 
Together, the answers to all these questions determine a worldview, that is, a comprehensive 
philosophical system, a coherent vision of the whole (as defined by the philosopher Leo 
Apostel and his collaborators in their book “Worldviews: from fragmentation to integration”, 
see bibliography). A worldview gives meaning to our actions and offers guidance for 
understanding the world around us. A coherent worldview is especially important in the 
current age of ever faster scientific, cultural and social developments, in which all the old 
certainties are called into question. The confusion and fragmentation accompanying this often 
leads to anxiety and pessimism, as well as the need for the psychological support given by an 
easy to understand conceptual framework. 
 
This framework is regrettably found all too often in fundamentalist ideologies or in irrational 
beliefs or superstitions. Science should be our pre-eminent weapon in the battle against 
irrationality and fundamentalism. Unfortunately, it seems that modern science contributes 
even more to the confusion with its deluge of often-contradictory observations and theories. 
One of the most important causes of this is the tendency of traditional science to divide all 
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problems into sub-problems, which in turn are reduced to even more specialised sub-
problems, and so on. The result is an abundance of very specialised information that appears 
to lack any semblance of coherence.  
 
Even so, in modern science there are also contrary tendencies, which aim to reintegrate the 
different disciplines. The driving forces behind this are the concepts of (complex) system and 
of evolution. The idea of system focuses on the fact that elements do not stand on their own, 
but form a coherent whole. The idea of evolution notes that the different systems have a 
common origin and dynamics. These ideas are developed in more detail in this book, in the 
form of an evolutionary-systemic worldview able to tackle the fundamental questions. 
Indeed, all these questions can be reduced to questions about the origin and the further 
evolution of systems: atoms, molecules, galaxies, cells, plants, animals, humans, the brain, 
societies, civilisations, etc.  
 
Recently developed scientific insights allow us to answer these questions. The answers are 
sometimes very abstract and general, sometimes more detailed. They can in principle be 
formulated in a mathematical form—although that is not always meaningful in practice. This 
scientific foundation means that they are more than just philosophical speculations. Indeed, 
they lead to concrete observations (of e.g. living beings or social developments) and 
applications (such as computer systems for complex problem solving, or the development 
and management of organisations). 
 
The following sections briefly discuss the historical development of worldviews.  
 

1.2 The	  religious	  worldviews	  

The first worldviews, from prehistoric civilisations until the Middle Ages, can be summarised 
under the denominator “religious”. Their answer to the question “why?” is simple: because 
God or the gods have wanted it. The gods are seen as personalised powers with their own 
goals and preferences, rather than as impersonal, natural mechanisms. The explanation for 
every natural phenomenon (such as lightning or the seasons) or social phenomenon (such as a 
famine or victory in war) is always divine intervention.  
 
In relation to complex systems, this explanation has been formulated most clearly by the 18th 
century theologian, bishop William Paley, in his famous parable of the watchmaker. Imagine 
that while walking you find a complex, organised system, such as a watch. Where does it 
come from? It cannot have accidentally come into being, like a rock or a small heap of sand. 
Since it has clearly been assembled in an intelligent manner, it must have been developed by 
an intelligent being, in this case by a watchmaker. The different living creatures around us 
are such systems. They must therefore have been designed by an intelligent being: God. 
 
The problem with this explanation however is that it is not a real explanation. After all, we 
still do not know why God has created things in exactly that way. Neither do we know who 
or what created God himself. Finally, this explanation has no predictive powers, since it is by 
definition impossible to understand the intentions of God or to find out what his plan is.  
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1.3 The	  Newtonian	  worldview	  

 
During the Renaissance and the following period of the Enlightenment, purely religious 
explanations began to be replaced by scientific explanations. This culminated in the 19th 
century in a new comprehensive worldview, which we will call Newtonian or mechanical, 
because it is based on the theory of classical mechanics, of which the founding principles 
were formulated by the physicist Isaac Newton.  
 
The Newtonian view can best be summarised as the Clockwork Universe: the cosmos runs 
like a mechanical clockwork. All the cogs fit perfectly together. The clockwork mechanism 
runs perfectly regularly and predictably, and it never shuts down. The inspiration for this 
view comes from the movement of the planets around the sun, which is indeed very regular 
and predictable. God may have created this “clockwork” a long time ago and set it in motion, 
but he is no longer involved in the way its runs. Divine intervention is therefore no longer 
necessary to explain specific phenomena.  
 
This new insight can be illustrated with a famous anecdote about the mathematician 
Laplace—after Newton one of the most important founders of the mechanical worldview. 
When Laplace set out his theory about the operation of the universe to Napoleon Bonaparte, 
the latter asked him what God’s role was in this construction. Laplace answered simply: “I 
have no need for that hypothesis.” 
 
On the other hand, the importance of this insight can be illustrated by the different roads 
followed by Western and Islamic science. Although in the Middle Ages, Islamic science was 
way ahead of its European counterpart, its development came to a halt out around the 11th—
12th century. A plausible explanation for this is the theological doctrine of “occasionalism”, 
which became dominant in the Arab world around that time. According to this philosophy, 
God intervenes at every moment in every process, and a cause produces an effect only 
because God has wanted it so. If one takes this philosophy literally, it no longer makes sense 
to search for scientific laws: after all, God does what He wants and thus makes every human 
prediction unreliable... 
 
The origin of Newtonian science, on the other hand, can be linked to freemasonry, which was 
involved in the creation of the very first scientific society, the Royal Society of London, 
founded in 1660, of which Newton was a member and later (1703-1727) chairman. The 
freemasons saw God as the Great Architect of the universe. This implies that God has 
designed the world according to rational, geometric principles. Once the world was created, 
he no longer had to intervene. The construction plan that God used is in principle 
understandable with the help of scientific observations and reasoning. It can be formulated in 
a mathematical form, as Newton did in his most famous work Philosophiae Naturalis 
Principia Mathematica (“Mathematical Principles of Natural Philosophy”).  
 
The influence of this mechanical worldview on modern society, especially during and after 
the Industrial Revolution, was so great that many still see it as the scientific worldview. Yet 
the underlying theory has become outdated through 20th-century developments, such as 
quantum mechanics, the theory of relativity and chaos theory (see further). Even so, it offers 
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a simple, logical and coherent vision that remains useful in certain well-defined fields. Here 
are the basic principles of this worldview:  
 

• Reductionism	  

All phenomena or systems (planets, living 
beings, societies, ...) can be analysed or 
reduced to their individual constituents: atoms, 
or, in more recent approaches, elementary 
particles. These are permanent, indivisible 
pieces of matter (materialism). They move 
through space, propelled by forces. All 
changes that we perceive around us can be 

reduced to the effect of such movements, which do not make any substantial alterations, but 
merely shift the positions of the components of the system. 

• Determinism	  

All movement, and thus all change, is subject to natural laws. These laws are absolute and 
permanent. If you know the forces, velocities and positions of the particles at a certain time 
(which together define the state of the system), you can completely predict their movement 
by applying these laws. There is therefore no uncertainty concerning what will happen in the 
future: everything has already been decided (determined). There is no freedom to change or 
influence the course of events. 
 
If we describe the state s as a function of time t, then the system follows a trajectory in the 
space of states (see chapter 8). In order to determine the state at all later points of time (s(t > 
0)), it suffices to know the state in the present (t = 0). 
 

• Reversibility	  

Trajectories cannot only be extended toward the future (t > 0), but also toward the past (t < 
0). The state of a system can thus be determined for any point of time in the past. Every 
movement is reversible. In a sense, there is no real difference between future, present and 
past. Nor is there any progress in evolution, because change has no preferred direction: every 
movement could just as well have happened in reverse. A planet can for example orbit the 
sun in clockwise or anticlockwise direction; a canon ball can be shot from left to right or 
from right to left: according to the Newtonian laws of nature, both possibilities are 
equivalent. 
 

• Weaknesses	  

Although it is more profound and more practical than the religious worldview, the Newtonian 
worldview still does not offer a complete explanation: the fundamental elements (space, time, 
particles, forces, laws) are after all postulated a priori, without real motivation. This 
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worldview does not have room for purpose, value, or meaning: everything is reduced to 
purposeless mechanisms. There is also no space for creativity, novelty or surprise.  
 
In practice, this reductionist approach only works for simple mechanical phenomena: the 
trajectory of cannon balls, billiard balls, or planets around the sun, ... More complex systems, 
such as living beings, humans, or societies, are not explained. Quantum mechanics has shown 
that it fails even for the simplest phenomena, such as atoms or particles. These are after all 
subject to Heisenberg’s uncertainty principle, which states that the movements of 
microscopic particles are intrinsically unpredictable. To conclude, the Newtonian worldview 
is completely unsuitable to explain life, people, or society, even though it helps us to 
understand some of their physical aspects (such as the effect of gravity on our body). 
 

1.4 The	  evolutionary	  systemic	  worldview	  

Since the development of the theory of evolution in the mid-19th century, and especially since 
the development of cybernetics, systems theory and self-organisation in the mid-20th century, 
the first signs of a new worldview have appeared, removing the shortcomings in the 
Newtonian worldview. We will briefly list the innovations of this evolutionary systemic 
worldview (ESW) and analyse and motivate them in depth in the rest of this book.  
 
In the ESW, there is no longer a need for God as the creator of the Universe. Complex 
organisation arises spontaneously, through accidental combinations of elements, without the 
need to appeal to an intelligent designer or “watchmaker”. It is natural selection that counts: 
which combinations will continue to exist and which will not? This is generally not pre-
determined, but depends on accidental, unpredictable factors. People are therefore free to 
make their own choices: after all, there is no determinism or predestination. Neither is there 
guidance, reward or punishment from above (God). These choices have to be viable, though, 
because otherwise humankind will be eliminated. 
 
The theory of evolution allows us to explain the origin of all complex phenomena by 
evolution from earlier, generally simpler, systems. Bacterial cells have for example evolved 
from chemical cycles, complex cells evolved from bacteria, multicellular organisms from 
complex cells, complex animals from simpler animals, humans from animals, societies from 
groups of people. Post-modern philosophers have announced the “end of the Great 
Narratives”, meaning that all explanatory models, scientific or religious, are relative. 
According to the ESW there certainly is a universal narrative or an origin story, but it is far 
more comprehensive and complicated than the traditional myths.  
 
The ESW is intrinsically coherent. There are no strictly separated phenomena or categories, 
such as matter and mind, or space and time: every phenomenon is after all connected to, and 
arises from other phenomena. These interactions make the whole into more than the sum of 
its parts. There is an essential continuity between human, animal, plant and mineral.  
 
The ESW vision is fundamentally optimistic. Its essence is self-organisation, or the 
spontaneous development of more complex and better adapted systems. Errors or negative 
developments do not persist, because they are eliminated by natural selection. “Nature” is 
creative and will sooner or later find a solution. Even if you leave things to their own devices, 
everything will eventually work out (although it is of course better to intervene sooner rather 
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than later). In societies too, there is a clear trend towards progress. There is however no 
ultimate goal or endpoint to this evolution: everything can always be improved.  
 
Although evolution is unpredictable, it does have a preferred direction: increased fitness (see 
further). This can help us to understand and direct our future, and to avoid choices that are 
not viable. Fitness is not a goal, but an implicit value of all life and matter. In a sense, this 
gives “meaning” to life.  
 
We will now show the historical development of the evolutionary systemic worldview 
through the introduction of the fundamental ideas of each of the complementary 
developments that form the foundation of the ESW: the theory of evolution, self-organisation 
and chaos theory, systems theory, cybernetics, and complex adaptive systems.   
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Chapter	  2. The	  theory	  of	  evolution	  

2.1 Darwin	  and	  the	  origin	  of	  species	  

In the religious worldview (and implicitly also in the Newtonian one), it was assumed that the 
species into which plants and animals are divided are unchangeable: the ancestors and 
descendants of cats are always cats—not dogs or cows—and their predecessors must 
therefore also have been cats. Cats can thus not have evolved from another species of animal, 
such as tigers. God has created the different species as they are now, and this is how they will 
remain.  
 
This assumption was challenged when palaeontologists found fossils of no longer existing 
animals in old geological layers. It turned out that the older (deeper) the layer was, the more 
“primitive” (simpler) the fossils were. This impelled biologists to consider the mechanisms 
that could be responsible for this development from simple to complex species. Of the 
different explanations, it was eventually the theory of evolution by natural selection, 
discovered by Charles Darwin, that proved the most plausible.  
 
This theory was initially very controversial, since it contradicted the religious worldview, as 
well as the Bible, which states that God created humans and animals in a single day. 
Darwin’s fear of this controversy caused him to wait decades before he published his theory, 
until his colleague Wallace came up with a similar idea with which he would have taken all 
the credit. Even after publication Darwin kept himself aloof from the discussion as much as 
possible and left it up to others, such as Huxley, to defend his theory. Even though we may 
find it hard to imagine such an emotionally charged discussion, the theory of evolution 
remains anathema to certain groups of fundamentalist Christians and Muslims, the so-called 
“creationists”, who take the creation story literally. This is particularly problematic in the 
USA, where the statistics show that more than half of the population believes in some form 
of creationism and only a third believes in the theory of evolution. (On the other hand, the 
Catholic Church has now officially accepted the theory of evolution as being scientifically 
supported.) 
 
These creationists are strongly driven (and sometimes very creative) in their formulation of 
arguments to refute the theory of evolution—although upon closer inspection these 
arguments prove simplistic and misleading. The presence of simpler organisms in deeper 
layers is for example explained through the Biblical flood story: when the waters rose, the 
primitive animals would have been the first to drown, while more sophisticated animals 
would have been smart enough to find safety on higher lands, which only flooded later. It is 
self-evident that evolutionary biologists consider such an explanation ridiculous. 
 
The theory of evolution also continues to encounter incomprehension from many people who 
may or may not be religiously or philosophically inspired and who cannot accept that blind, 
impersonal mechanisms can bring about functional order. Some of them have tried to prove 
scientifically that the complex systems we see around us would not have been able to evolve 
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according to Darwinian mechanisms, because the likelihood that such a process would end 
well is far too small. This approach has recently led to a more sophisticated variety of 
creationism, the so-called “intelligent design” theory, which states that an unspecified 
intelligent power has been intervening to ensure that evolution would run smoothly. We will 
analyse this argument in detail at a later point. 
 
Many progressive thinkers and social scientists are also critical about Darwinian 
explanations. This is however mostly based on a misunderstanding, where the theory of 
evolution is held responsible for the outdated ideology of “social Darwinism”. This ideology 
applied Darwin’s idea of “survival of the fittest” to society, to find a justification for a class 
society in which the poor or handicapped are left to their own devices. More recent 
applications of the theory of evolution however find that social systems should evolve 
towards more mutual help and solidarity in order to be successful, as we will demonstrate in 
some detail. 
 
The theory of evolution is generally accepted within the natural sciences, although some 
scientists note that we should take other mechanisms into account besides natural selection, 
such as self-organisation and symbiosis. We will also discuss this criticism in more detail in 
later chapters.  
 

2.2 How	  does	  evolution	  work?	  

Darwin’s inspiration for his theory of natural selection came from the way horticulturists or 
animal breeders cultivate new breeds or varieties of plants and animals. There are for 
example hundreds of dog breeds, from the tiny Chihuahua to the gigantic Irish wolfhound, 
and from the hulking, compact bulldog to the slender, elegant greyhound. These are all 
descendants from the same wolf-like ancestor. If a breeder wants to create a breed with a 
special property (e.g. not barking), he starts with an existing group of dogs, of which he 
selects those that most closely approximate that property (i.e. those that are least likely to 
bark). Among the descendants of this first generation, some will bark more, others less. The 
breeder again selects those that bark least and makes these produce a new generation of 
descendants. From these, he again selects those that bark least, and so on. After many 
generations, he will eventually have a group of animals that never bark. The further 
descendants of this group will generally inherit this tendency not to bark from their parents. 
Thus a new, non-barking dog breed has been created.  
 
Darwin’s ingenious idea was the generalisation of this mechanism of artificial selection for a 
situation in which there is no breeder to select certain properties. Darwin noticed that there is 
selection in nature as well: generally, an organism has many more descendants than can 
survive. There is after all always a limited supply of food, and there are many diseases, 
predators and other dangers. Thus, most organisms die before they have had a chance to 
reproduce. Those who do manage have been selected from the initial group; the others have 
been eliminated. This selection happens spontaneously, by nature. That is why this 
mechanism is called natural selection. Nature does however not select for a specific 
property, such as non-barking, but for the general capacity to survive and reproduce—what 
we will later call fitness. This capacity will depend on the specific environment, and will 
require different properties in different environments. 
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Let me illustrate this with the classical problem of why giraffes have such a long neck. We 
start out with an ancestor of the giraffe, an antelope-like animal that still had a short neck. 
The descendants of this proto-giraffe all have slightly different genes, each a specific 
combination of the genes that they inherited from the father and mother. Some of these genes 
give rise to a slightly longer neck than others do. Giraffes with a longer neck can eat leaves 
from taller trees and thus have more food at their disposal. In times of famine, when nearly 
all the trees have been stripped of their leaves, only those descendants with the longest neck 
get enough food and so survive. Their descendants inherit the genes for a longer neck, but 
again with slight variations between the different offspring of a given set of parents. Of these, 
those with the genes for the longest neck will again have the biggest chance to survive. Thus 
in consecutive generations ever-longer necks are selected for.  
 
Now suppose that some of these proto-giraffes have spread to an environment where there 
are no trees, but only low bushes. In this environment a long neck has no advantage, quite the 
contrary. Natural selection here will rather lead to the capacity to eat close to the ground. 
This group of proto-giraffes will therefore evolve to a variety with a short neck and legs and 
gradually come to differ more and more from their cousins with a long neck. After several 
hundreds of generations, the difference will be so large that we distinguish the two varieties 
as two species, which because of physical differences can no longer mate with each other and 
thus can no longer interbreed or produce intermediary forms. In this way, different species 
arise, each adapted to their own environment.  
 
From these examples, we can deduce the general mechanism:  

• blindly try out many variations on a certain base form (trials) 

• eliminate the variations that do not work as well or that have not adapted as well 
(errors) 

• keep and/or reproduce those that work better 

• start again 
 
This continuing trial-and-error procedure (“algorithm”) spontaneously leads to constant, 
irreversible improvement, during which the system adapts ever better to the requirements of 
the environment. There are two essential components to this mechanism:  
 

• Variation: the individuals upon which selection acts have to be different, and every 
new generation has to give rise to new differences. In biological evolution, these 
variations are generated through mutations (accidental errors in the replication 
process) in the genes, and through recombination of the genes of the father and 
mother. 

• Selection: the “best” variations have to be selected. If something works, it is retained; 
if it does not, it is eliminated. The extent to which something works, or is adapted, is 
called fitness.  
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2.3 The	  increasing	  importance	  of	  the	  evolutionary	  approach	  

The idea of evolution through variation and selection is universal and is not restricted to 
biology or the origin of species. An increasing number of scientific disciplines appreciate its 
importance and use. One could even think that Darwinism has become a fashion over the last 
couple of years, if it were not for the fact that this trend has very deep roots. I will discuss 
several examples below:  
 

• Psychology	  

It turns out that our thought processes and emotions can be explained by assuming that they 
are the result of selection for fitness. The emotion of jealousy, for example, causes men to 
keep an eye on their partner, to ensure that the children of their wives are also their own 
children and not those of a rival. Men who did not know this emotion had fewer descendants 
and their genes were thus selected against. The attraction of men for women with long legs 
and noticeable breasts can be explained because these are signs of sexual maturity and thus of 
the ability to produce descendants. Pre-pubescent girls on the other hand have short legs and 
flat chests, which is experienced as less attractive.  
 
When it comes to thought processes, it turns out that people often make mistakes in logical 
deductions (syllogisms), which is understandable since natural selection has not prepared our 
brains for this kind of abstract reasoning. However, if we formulate the syllogism as a social 
problem, everyone immediately gives the right answer. Social interactions are after all very 
important for survival in groups, so our brains are especially adapted to deal with these kinds 
of problems. 

 

• Sociology	  

“Sociobiology” explains the development of social systems by looking at the way these 
systems add to the fitness of their members. Vampire bats that have managed to suck a lot of 
blood, for example, donate a portion of their yield to their less fortunate colleagues with the 
expectation that they in turn can later count on mutual aid or solidarity. Thus these bats have 
a lower risk of starvation in times of scarcity. Ant colonies are one massive, integrated 
society in which every worker is willing to give her life for the colony. The reason is that all 
of the colony’s members are children of the same “queen” and therefore largely share the 
same genes. These genes have been selected to maintain the entire family rather than a single 
individual. We will discuss these applications to social systems in more detail below. 

 

• Medicine	  

Our susceptibility to and immunity against illnesses can be explained through natural 
selection of both humans (who need an efficient defence mechanism to survive) and 
pathogens (which need to be as contagious as possible in order to reproduce widely, but need 
to keep their host alive as long as necessary to enable the infection of others). The AIDS and 
common cold viruses are for example so successful because their victims do not become 
bedridden immediately, but retain the opportunity to spread the virus via contact with others 
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(through sex or through sneezing near others). On the other hand, it is unlikely that the Ebola 
virus will become a large-scale epidemic, because infected people become deadly ill very 
quickly, while they can infect others only via contact with bodily fluids.  
 
Here is a different kind of example. Dioxins are extremely poisonous for laboratory animals, 
but much less so for humans. After the Seveso catastrophe of 1976, when an explosion in a 
factory in Italy released massive amounts of dioxins into the environment, no human being 
became deadly ill (although a few had developed skin problems). Animals such as rabbits 
however died in great numbers. A plausible explanation is that humans have been using fire 
for hundreds of thousands of years, and wood smoke does contain many dioxins. Genes that 
were not resistant to this have been selected out by now.  

 

• Economics	  

Competition between businesses, where the most successful grow and are imitated and the 
less successful disappear, shows great similarity to natural selection between organisms. 
Here, the market plays the part of the environment that decides which businesses are adapted 
to the game of supply and demand and which are not. New businesses with new ideas or 
products are constantly being founded, while existing businesses regularly test new methods, 
services or technologies (variation). Most new businesses will eventually go bankrupt 
(natural selection). The most successful entrepreneurs are often those who find an as yet 
unexploited niche, that is, a way to sell products or services for which there is a large 
demand, but where there are as yet no competitors. 
 

• Culture	  

Cultural phenomena such as clothing fashions, scientific theories, jokes, rumours, songs, and 
religions can be described as ideas that are transmitted from person to person. Such pieces of 
information that “reproduce” themselves are in that way analogous to our gene. They are 
therefore called memes. Memes are engaged in constant competition: we are continuously 
exposed to much more information than we can remember or pass on to others. We will 
remember and pass on only a small percentage of the ideas that we hear, read or see. 
Consequently, there is a strong natural selection of memes. Additionally, we generally 
introduce small variations when we for example tell an anecdote, a joke or pass on a rumour 
to someone else. This combination of variation and selection causes memes to adapt to 
society’s preferences.  

 
The “fittest” memes are spread widely and eventually become myths, traditions or generally 
accepted knowledge—even if they are not based on fact. An example is the so-called Mozart 
effect: the recurring idea that your baby becomes more intelligent if it regularly hears 
classical music. This urban legend comes from the mistaken representation of an experiment 
in which adults listened to music and immediately afterwards appeared to score better on 
certain psychological tests (perhaps simply because the music had relaxed them). It is only a 
small variation from adults to children, and from children to babies. Moreover, since parents 
like the idea that a simple intervention such as putting on a Mozart CD could make their baby 
smarter, this latest version has become very popular in newspapers and magazines. One 
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journalist cites another one without anyone still wondering about the scientific evidence for 
this claim.  
 

• Computing	  

Computers can solve complex problems through the random generation of possible solutions, 
retaining only the best ones and allowing these to reproduce. During this process, variation, 
analogous to that in biological evolution, is introduced. Every potential solution is presented 
as a string of letters or bits, similar to the DNA strings that store an organism’s genetic 
information. During “reproduction”, several letters are randomly replaced by others 
(mutations). On the other hand, strings of two solutions (a “parent pair”) are recombined into 
a new string, which can for example consist of the first half of the first string followed by the 
second half of the second string. This is equivalent to sexual reproduction. The cycle is 
repeated so that ever more generations arise, of which only the best are allowed to reproduce. 
This continues until a satisfactory solution has been found. The method is called genetic 
algorithms or evolutionary computation. It turns out to be very useful to solve all sorts of 
practical problems that are too complicated for classical methods, such as the development of 
a “nervous system” for an autonomous robot, or an aerodynamic shape for a car.  
 

• Chemistry	  

Through generating a variety of candidate molecules and repeatedly filtering out the best, it is 
possible to create molecules with specific properties. This is directly applicable in 
pharmaceutics: a medicine is a molecule that needs to suppress or stimulate a certain 
biological function (e.g. pain or fever). This is typically done through filling a “receptor” for 
certain signals in our body and thus blocking or facilitating the stimulation of that receptor by 
for example hormones. Receptors typically have very complex shapes, which makes it 
difficult to find a molecule that will fit exactly like a key in that lock. If we let candidate 
molecules pass receptors in great numbers, we will automatically find those that are adapted 
(those that stick to the receptor) and those that are not (those that are flushed away). 
Eventually, the best ones can be manufactured in great numbers to be sold in pill or drop 
form as a new medicine.  
 

2.4 What	  is	  still	  lacking	  in	  the	  evolutionary	  approach?	  

Despite its many successes, the Darwinian approach on its own is still too restricted to really 
generate a new worldview. 
 
On the one hand, the theory is too reductionist. Organisms (in Darwin’s original theory), 
genes (in the more modern, “neo-Darwinian” theory) or memes (the cultural variant) are seen 
as the primitive elements or “units of selection”, to which everything should be reduced. 
Consequently, there generally is little attention to the interaction between these units (e.g. the 
symbiosis between different organisms, or the cooperation between genes), or for the systems 
(such as societies) that they form together. Instead, the complex influence of a multiplicity of 
other units is reduced simply to the influence of the “environment”. 
 



22 
 

On the other hand, Darwinism does not really explain how complexity arises. Adaptation or 
fitness can after all be reached by both very simple systems (e.g. viruses, bacteria) and very 
complex ones (e.g. humans, societies). Increased fitness does not therefore imply increased 
complexity, and many biologists, among whom the palaeontologist Stephen Jay Gould, have 
argued that increasing complexity, such as we see in fossils, is only an accidental side effect 
of variation and selection, not a fundamental mechanism. My thesis in this book is exactly 
the opposite: evolution automatically produces more complexity, and those cases in which 
this does not appear to happen (e.g. viruses) are the exception rather than the rule. 
 
To tackle these problems fundamentally, we need to add several new concepts to that of the 
theory of evolution, such as self-organisation, emergence, and co-evolution. To develop a 
good understanding of these, we will now discuss some complementary approaches.  
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Chapter	  3. Self-organisation	  and	  chaos	  

3.1 Introduction	  

Nature provides plenty of examples of the spontaneous emergence of ordered structures, such 
as salt crystals in a solution, snow crystals in the atmosphere, or ice flowers on a window. No 
intelligent designer or “watchmaker” is involved, but neither is there a clear influence of the 
environment, such as in Darwin’s theory of evolution. Therefore, this phenomenon is called 
self-organisation.  
 
The second law of thermodynamics (see 10.3) makes this even more paradoxical, because 
this law states that the entropy (“disorder”) of an isolated system can only increase, not 
decrease. This corresponds to our daily experience: if we do not intervene, disorder increases: 
a room tends to get dirty and messy, machines wear out or break and do not repair 
themselves.  

 
This paradox in thermodynamics has been investigated most 
thoroughly by Ilya Prigogine of the Free University of 
Brussels, who in 1977 got the Nobel Prize in Chemistry for 
his work. The most important contribution of Prigogine and 
his collaborators—the Brussels school of thermodynamics—
is the concept of dissipative structures. These are forms of 
spontaneous order or structure, which perpetuate themselves 
by exporting (“dissipating”) entropy. Using several 
examples, I will illustrate Prigogine’s and others’ insights on 
self-organisation, and the related phenomenon of chaos. 
 

3.2 Examples:	  magnetization	  and	  Rayleigh-Bénard	  convection	  

• Magnetization	  
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Probably the simplest example of self-organisation is the magnetization of materials such as 
iron. You can produce magnetization by sliding a magnet over a pin, after which the pin itself 
becomes magnetic and able to attract other pins. The explanation is straightforward: 
magnetisable matter consists of molecules that each have an individual magnetic field, with a 
specific direction (shown as an arrow in the illustration below). These molecules can be seen 
as miniscule magnets. Initially, all these magnets point in different, random directions (as 
shown left on the illustration). This way, the varying magnetic fields or attractive forces 
negate each other, so that the total magnetism is zero. After magnetising the material, for 
example by subjecting it to an external magnetic field, all the little magnets point in the same 
direction (as shown right on the illustration). Thus the magnetic fields reinforce each other, 
producing a clearly observable total attractive force. 
 
The interesting thing is that in certain circumstances magnetization can also arise 
spontaneously, without the interference of an external field. This is a clear example of self-
organisation: the initially unordered little magnets (left) align themselves (right). The reason 
that the magnets prefer this ordered configuration is that magnets that point in opposite 
directiosn (e.g. the north pole of one magnet against the north pole of another) repel each 
other. There is no repulsion when they are all pointing in the same direction. Then the system 
is balanced. 
 

• Rayleigh-‐Bénard	  convection	  

A somewhat more complex phenomenon is the 
development of so-called Bénard cells or rolls in a 
fluid. The fluid is heated evenly from below (for 
example on an electric stove), while it cools evenly 
from above (for example by contact with the air). 
(You can try to reproduce the experiment with a flat 
pan in which you pour enough oil to cover the 
bottom.) If the difference in temperature between 
bottom and top is large enough, you will see the 
development of a honeycomb pattern of hexagonal 
“cells” (see photo), or a striped pattern of parallel 
“rolls”. Below I will discuss the case of the rolls, 
because that is the simplest.  
 
Just like the magnetic material, the fluid consists of 

molecules. However, since this is not solid matter, these molecules are in constant 
movement. Usually this movement is random, and every molecule moves in its own 
direction, independent of the others (shown by the arrows in the illustration, left). Therefore 
these molecules constantly collide with each other, with the result that the net movement is 
zero: the fluid is motionless.  
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surface

bottom

surface (cool)

bottom (hot)  
 
But when the bottom is heated, the fluid here starts to expand and thus becomes lighter. The 
fluid at the top is colder and therefore heavier. The warm fluid will normally rise and the cold 
fluid will sink. This causes a problem, since the warm fluid is trying to work itself upwards, 
while in the same area, the cold fluid wants to go down. This will only happen if some form 
of coordination appears, so that these movements do not hinder each other. What happens is 
that in one place all molecules will make an upward movement until they reach the top. 
There, they cool down, after which they will sink again a little further. At the bottom, they 
heat up again, move back to their old place, and rise, after which the cycle repeats itself (right 
in the illustration). The net result is a sort of rotating flow or “roll” of synchronised moving 
molecules. The flow caused by the differences in temperature is called “convection”. The 
entire fluid subdivides into a series of parallel rolls. A roll that is rotating clockwise is always 
followed by a roll that is rotating anticlockwise (see illustration). Again, we recognise self-
organisation: uncoordinated molecules spontaneously order their movement until they are all 
synchronized.  
 

3.3 Global	  order	  

If we want to understand in more detail how such systems come to self-organise, we have to 
start with the interactions between the different components (the molecules in our example). 
Every molecule interacts (through its magnetic field or through collision) initially only with 
molecules in its immediate neighbourhood, and is independent of those molecules that are 
further away. Through these interactions or other accidental movements it can however 
happen that neighbouring molecules become aligned, i.e. point or move in the same direction. 
The other molecules in that neighbourhood will then tend to align or adapt themselves to 
those molecules, to avoid collision or repulsion. These newly aligned molecules will in turn 
align the molecules in their environments. In this way, the order or alignment propagates 
from molecule to molecule until it eventually covers the entire system. Thus, an accidentally 
arising, local order spreads through the material, resulting eventually in a global ordering of 
all molecules.  
 
This order now directs or controls the behaviour of all components: individual molecules can 
no longer afford to go against the order (e.g. moving downwards if all the others nearby are 



26 
 

moving upwards, or pointing left if the entire magnetic field is pointing right), because the 
collective influence of the other molecules is too strong. This order or control is collective, or 
distributed among the components: there is no central “leader” or “director” who decides 
what the other components should do. All molecules contribute equally to the maintenance of 
the organisation. A more complex example of such distributed organisation is found in the 
brain: the brain works as a whole; there is no part of the brain or neuron that tells the others 
what to do.  
 
An important benefit of such distributed order is robustness: the system can take a beating 
and will not easily be brought off balance. This is because the system is redundant: if one 
component fails, there are enough similar components to take over. For example, if one 
magnet is forced out of its direction, it will be pulled back by the others. After damage to one 
part of the brain, for example when a tumour is removed, people remain able to lead a largely 
normal life, because the other parts of the brain replace the lost functionalities. On the other 
hand, damage to a computer or computer programme generally causes a complete shutdown. 
This is because a computer is not self-organising, but dependent on the detailed instructions 
of the programmer. If something goes wrong with that, the system cannot repair itself.  
 

3.4 Nonlinearity	  

In mathematics, a function f is linear if, when applied to a sum, the result of the function is 
equal to the sum of the results for each of the components:  
 
 f(a+b) = f(a) + f(b) 
 
It follows that: 
 
 f(2a) = f(a+a) = f(a) + f(a) = 2f(a) 
 
More generally, this means that if a component is multiplied with any number k, the new 
result can be found by simply multiplying the old results with k:  
 
 f(k·a) = k·f(a) 
 
Applied to concrete systems, linearity means that the result or effect [f(a)] of a process is 
proportional to the cause [a]. For example, if we push a car twice as hard (or if two people 
push instead of one), the car will move forward twice as fast. This means that small causes 
necessarily lead to small effects, and large causes to large effects. 
 
In most quantitative models (such as in Newton’s mechanics), we try to assume linearity as 
much as possible, because this makes the calculations easier. In practice however, most 
systems, and especially self-organising systems, are nonlinear. This means that the effect 
increases faster or slower than the cause. 
 
In for example the case of magnetisation, a small fluctuation (three or four little magnets that 
align themselves accidentally) can lead to a very large effect (the material becomes 
completely magnetic). Conversely, a large cause (for example a heavy shock that causes 
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thousands of little magnets to change direction) can lead to an unnoticeable effect (because 
the remaining aligned magnets pull the others back to their place).  
 

3.5 Chaos	  

The situation in which small causes have large effects is called sensitive dependence on 
initial conditions. Here, the initial conditions play the part of the cause, or the state of the 
system at the start of the process that is being examined. The system is called sensitive, 
because it reacts strongly to even the smallest variation in the initial conditions. In other 
words, the smallest, hardly visible fluctuation can lead to a completely different result. 
 
Examples: 

• A pencil standing upright on its tip will almost immediately fall to one side. The 
smallest disturbance (a breeze, an irregularity on the table surface, some more air 
molecules colliding with it from the left than from the right) is enough to break the 
balance and cause the pencil to tilt in a certain direction and fall. However, we can 
generally not predict in which direction it will fall. 

• Another classical example is the famous butterfly effect. The system of equations that 
allows us to predict the weather, based on air pressure, temperature and wind 
direction, is to a great extent nonlinear. That is why the weather is strongly dependent 
on small fluctuations in the initial conditions, such as a bit more wind here or there. 
In principle, the fluttering of a butterfly in Tokyo may cause a hurricane in New York 
a few months later. 

 
Systems of which the behaviour is so sensitively dependent on the smallest fluctuations are 
called chaotic. This means that they can suddenly change greatly due to a minimal influence, 
and thus behave in a very irregular, unpredictable manner. Examples of this are found in the 
turbulent currents at the bottom of a waterfall, or the weather, which can change from day to 
day and whose changes cannot be predicted more than a couple of days in advance, even with 
the most powerful computers.  
 
The existence of this nonlinearity or chaos has an important implication for the Newtonian 
worldview: even systems that are in principle deterministic (i.e. their further evolution is 
completely determined by their original conditions) are in practice unpredictable, because we 
can never establish the initial condition with perfect accuracy, and because the smallest error 
can lead to very great deviations.  
 

3.6 Far-from-equilibrium	  systems	  

In thermodynamics, systems are called closed if they do not exchange matter or energy with 
the outside world. Such systems evolve naturally to a state of equilibrium of maximal entropy 
or maximal disorder (the second law of thermodynamics, see 10.3). 
 
Self-organisation implies a reduction of disorder and is therefore in principle impossible in a 
closed system. Consequently, self-organising systems need to at least lose entropy, which 
typically happens in the form of heat (energy with a high degree of entropy), which is 
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released into the environment. Such release of entropy is called dissipation. Once all 
available energy has thus been released in the form of heat, the activity shuts down and thus 
the system reaches equilibrium. This is what happens with magnetisation as soon as all the 
little magnets have been aligned: there is no further movement.  
 
Another way to enable self-organisation is to constantly add energy or matter with a low 
degree of entropy. (This can also be described as the input of “negentropy”, i.e. negative 
entropy, in other words, order.) Through the normal processes within the system, this is 
converted into high entropy, which in turn needs to be dissipated. Such systems never reach a 
thermodynamic equilibrium, since they continue producing and dissipating entropy. This is 
why they are called “far from equilibrium”. Such systems continue working and do not shut 
down. The dynamic organisation that characterises them is called a dissipative structure.  
 
The Rayleigh-Bénard convection is the simplest example: the rolls or cells form a clear 
organisation or structure, which is not static, but rather based on the continuing, circulating 
flow of the fluid. Energy with low entropy is introduced through the heating at the bottom. 
This is released or dissipated in the form of high entropy at the cooler surface. Other 
examples are vortexes, flames, ocean currents (such as the Gulf Stream) and whirlwinds: 
these are dynamic structures that can only be perpetuated through the introduction of energy 
(solar heat, fuel, or running water). Even more important, all living beings are dissipative 
structures: they can after all only survive through a constant intake of matter and energy in 
the form of food, which is subsequently excreted in the form of waste and heat.  
 
Far-from-equilibrium systems are nonlinear: the input of energy strengthens certain effects, 
while the loss (dissipation) of energy weakens other effects. This makes the system generally 
unpredictable or chaotic: the further from equilibrium (the more energy is injected), the more 
chaotic. This can easily be observed with a tap: the wider the tap is open, the faster the water 
is pushed out. Thus the flow has more energy, but the current also becomes more irregular or 
turbulent.  
 

3.7 Bifurcations*	  

For nonlinear systems, there generally is more than one possibly solution to the system of 
equations that describes the system. Thus, the system can end up in more than one stable 
situation or “steady state”. The further from equilibrium, the more solutions. The appearance 
of such choices when the system gets further away from equilibrium is called a bifurcation. 
 
Example: Bénard rolls: Initially, when the difference in temperature between the top and the 
bottom is still small (close to equilibrium), the fluid remains immobile (speed = 0). When the 
difference in temperature increases up to a certain value t0, the rolls start to appear. For a 
given roll there are however two possible rotation directions, namely clockwise and 
anticlockwise. That is to say that on a given location, the fluid has to “decide” whether to 
start moving up or down. The system has no a priori preference, but it has to choose one of 
the two alternatives. The final “choice” depends on accidental factors. These are generally 
too small to observe, which is why the result (the path that the system chooses when it 
reaches the bifurcation) is unpredictable.  
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The further from equilibrium the system gets, the more bifurcations it undergoes and thus the 
more choices it gets. Complete chaos arises when there is an infinite number of choices, and 
the system jumps continuously and unpredictably from one option to the next. Such 
turbulence arises when the heat under the Bénard rolls continues to rise, until the fluid starts 
boiling. 
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Chapter	  4. Systems	  theory	  

4.1 Holism	  and	  emergence	  

A fundamental problem of the theories of both self-organisation and evolution is that they do 
not actually explain what organisation and complexity really are. The reason for this 
shortcoming is that they implicitly still start from the reductionist approach, according to 
which every phenomenon can be reduced to its smallest material components: elementary 
particles. These particles are by definition not complex and therefore show no organisation. 
The organisation that we observe then appears to be no more than a superficial phenomenon, 
for which there is no place in the Newtonian worldview.  
 
In order to overcome this problem, we will now introduce two closely related approaches, 
systems theory and cybernetics, which have both examined organisation, albeit from 
complementary angles. Against reductionism, systems theory places holism, which 
emphasizes the whole rather than the parts. In other words, the cohesion is more important 
than the individual components.  
 
The simplest way to express this is the well-known expression: the whole is more than the 
sum of its parts. However, this begs the question, of what is there more? The answer is 
emergence. Emergent properties are properties of a whole that cannot be reduced to 
properties of the parts. This can best be explained by means of several examples.  
 
Examples: 

• A car as a whole has the property that it can drive. None of the individual parts, such 
as the body, wheels, motor or axes, can drive on their own. The ability to drive is 
therefore an emergent property. The weight of the car on the other hand is not an 
emergent property, since it is not more than the sum of the weights of the parts.  

• Following the same principle, an animal has the property of being “alive”. The 
individual molecules comprising the animal are however dead matter.  

• Table salt has the properties of forming crystals, being edible and having a salty taste. 
Table salt (known in physics as sodium chloride) is a compound of the elements 
sodium (a highly reactive metal) and chlorine (a poisonous gas). Neither of these 
parts has the properties of table salt.  

• A piece of music has the properties of rhythm, harmony and melody. The individual 
notes comprising the piece of music however do not have these properties. 

 
Self-organisation is typically characterised by the appearance of emergent properties. As we 
have seen, Bénard rolls are characterised by their rotation direction: clockwise or 
anticlockwise. These rolls however, consist of molecules that move independently from each 
other in a straight line until they collide. Therefore, the molecules do not have a rotation 
direction.  



31 
 

 

4.2 What	  is	  systems	  theory?	  

The ideas of emergence and holism were first formulated around 1925 in the work of authors 
such as Smuts and Whitehead. The ideas remained however rather vague, with a mystical 
tint, and therefore not very scientific. Thereafter, the biologist Ludwig von Bertalanffy 
introduced the idea of a system as a coherent whole that in principle could be described in a 
precise, mathematical form. In 1955 he created, together with scientists such as Boulding and 
Rapoport, the Society for General Systems Research (still extant as the International Society 
for Systems Science, or ISSS). This society aimed to develop a general systems theory, that 
is, a theory that would be applicable to all possible types of systems, whether they are 
physical, living, social or intellectual systems. Thus, general systems theory would lead to a 
unification of science, which until then had been fragmented in a manifold of disciplines: 
physics, chemistry, biology, psychology, sociology etc.  
 
To understand this, we have to examine the underlying philosophy of systems theory. A 
system is defined as a collection of components, connected through relationships. These 
components may be of very diverse nature: atoms, molecules, cells, transistors, neurons, 
people, companies, symbols, concepts, etc. Relationships represent the influence of one 
component on the behaviour of another. For example, an atom exerts an electromagnetic 
force on another atom, a manager gives orders to their subordinate, a neuron gives an 
electrical impulse to another neuron. Moreover, the system as a whole has its own identity, 
which distinguishes it from its environment or background. Examples of systems are an 
organism, organisation, planet, computer, bicycle, number system, or the periodic table of 
elements in physics.  
 
A general system is intrinsically abstract, independent of the concrete matter that makes up 
its components. This means that physically very different systems can be isomorphic, i.e. 
they can have a similar structure or organisation. For example, a society is in certain respects 
isomorphic to an organism, and a computer behaves in certain respects like the brain. Certain 
analogies or isomorphisms enable us to better understand complex systems, such as the brain. 
Since the organisation is defined in an abstract way, mathematical models of systems are in 
principle possible.  
 
Because of this parallelism between systems with components of different kinds, it now 
becomes possible to rise above the barriers between disciplines: after all, by making the 
material or concrete components abstract, we can now understand the phenomena (for 
example life, thought, societies...) as different instantiations or implementations of the same 
fundamental organisation.  
 
General systems theory is actually not a theory in the strict sense, but rather a way of 
thinking. It is therefore often denoted with terms such as systems approach, systems science, 
or systems research. We can also see it as an attempt to create a universal language, which 
would allow us to describe all possible systems, or as a conceptual framework with very 
broad applications, among which are system analysis, problem solving, system design (for 
example technological systems or organisations), and the integration of data from different 
disciplines.  
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4.3 Basic	  components	  of	  a	  system	  

The insight that was fundamental to von Bertalanffy’s approach is that real systems, such as 
living beings, are always open: they exchange matter, energy and/or information with their 
environment. Cut an organism completely off from its environment (for example in an 
airtight box) and it will soon die because of lack of oxygen, hunger and thirst. In the 
Newtonian worldview on the other hand, it was implicitly assumed that the examined 
systems (such as the solar system) were closed: all matter and energy that influence the 
system are already part of the system and will stay there; it is not necessary to take the 
environment into consideration.  
 
The step from closed to open systems requires the introduction of several new fundamental 
concepts. The system is separated from its environment by a boundary. Whatever is inside 
this boundary is by definition part of the system; that which is outside the boundary is part of 
the environment. For example, for a human being, the skin is the boundary between system 
and environment. Moreover, every system interacts across this boundary with its 
environment through the exchange of matter, energy and/or information. Incoming 
interactions are called input; outgoing interactions are called output.  

 
Normally, the input is processed in some way inside the system, and the result of this 
processing forms the basis of the output. The system can thus be seen as a process that 
transforms input into output. Such “passing through function” is sometimes called 
throughput.  
 
Examples of input-output systems: 

• The body: food, drink, oxygen = input; faeces, urine, CO2 = output; digestion and the 
burning of calories = throughput 

• The brain: perceptions, stimuli = input; decisions, actions = output; processing of 
received information = throughput 

• A computer: movements across keyboard and mouse = input; information produced 
on screen or in a printer = output 

 

4.4 Coupled	  systems	  

Input and output make it possible to couple different systems, by using (part of) the output of 
one system as input for another system. For example, the berries of a plant (output) are eaten 
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by birds (input), while bird droppings produce minerals (output) that are taken in by plants 
(input). Coupled systems are to a certain extent dependent on each other. 
 
There are three elementary forms of coupling:  

• sequential (or serial): the output of the first system forms the input of the second; the 
systems follow each other in unambiguous order 

• parallel: both systems receive input from the same source (an unspecified third 
system) and deliver output to the same destination; they work side by side, in parallel 

• circular: the input of the first system forms the output of the second and vice versa; 
they “feed” each other and together they form a loop; this is also called feedback and 
will be discussed in more detail in the next chapter.  

sequential parallel circular

A B

AA

B B

 
 

4.5 Subsystems	  and	  supersystems	  

When we are dealing with a more complex system, consisting of several systems coupled in 
different ways, we speak of a network. When the systems in the network form a coherent 
whole, which can be clearly demarcated from its environment, they define a larger, 
encompassing system: a supersystem.  
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The illustration shows a network of coupled systems (above), each with their input and 
output. This complex whole is presented in a simplified way (below) as a single, overarching 
system, the supersystem, which has its own input and output. In such representations, the 
supersystem behaves like a so-called black box: it is impossible to look inside and see the 
internal structure or components, but it can be studied by observing the relation between 
input and output. 
 
The components or parts of a system are in turn generally systems themselves: subsystems. 
Normally each system contains subsystems, while it is encompassed by one or more 
supersystems. For example, for the system “human”, society is a supersystem, while the heart 
and the brain are subsystems. These organs themselves consist of cells, which are subsystems 
of the subsystem. The cells have molecules as subsystems. Such supersystems and 
subsystems together form a hierarchy, where each system on a certain level of the hierarchy 
consists of other systems from the lower level, as illustrated below. 
 

supersystem 
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This hierarchical organisation of complex systems implies that it is always possible to “zoom 
in” (enlarge, for example with a microscope) in order to study smaller subsystems, meaning 
that you go down in the hierarchy. You can also “zoom out” (view from a greater distance, 
by means as it were of a “macroscope”, as suggested by J. de Rosnay) to better observe the 
larger supersystems. This means that you go up in the hierarchy. Both are movements in the 
“scale dimension”. This means that you continuously change the scale of the representation, 
like a satellite that takes photos on a smaller scale (e.g. of a continent) or on a larger scale 
(e.g. of a city). 

society 
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organs 

cells 

molecules 
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Chapter	  5. Cybernetics	  

5.1 Goal-directedness	  

Cybernetics developed around the same time as systems theory, with similar intentions to 
arrive at a universal theory of organisation that would apply to all disciplines. Some of the 
most famous founders of the approach are Norbert Wiener, W. Ross Ashby, Heinz von 
Foerster and Gregory Bateson. Cyberneticists and systems theorists collaborated and strongly 
influenced each other. The difference is that systems theory focuses mainly on the structure 
of a system (“how does it work?”), whereas cybernetics focuses mainly on the function 
(“what is it for?”). 
 
The function of a system or subsystem can be defined as the goal that the system aims to 
realise and for which it has been created. In practice, we see that many systems have a 
purpose: human beings, automatons, organisations, animals, and in fact all living beings. For 
example, plants strive to absorb as much light as possible, and will therefore make their 
leaves grow in the direction of the sun. Lions aim to catch prey, and will thus adjust their 
actions (for example stalk the prey, run towards it, pounce it, bite it to death) towards this 
goal. The subsystems of the system “lion” (for example teeth, claws, eyes) contribute to the 
attainment of that goal and therefore each has its own function.  
 
With goal-directed actions, we assume that the goal will not necessarily be reached, and if it 
would be reached, that we will generally not know when it will be reached. In the Newtonian 
worldview, however, there is no room for “trying”, “succeeding” or “failing”, because the 
outcome of each action is always predetermined. Cybernetics does not consider this a 
problem, because it assumes, like the theory of evolution and other theories before it, that we 
cannot predict the future anyway, and therefore have to rely on trial and error.  
 
A more fundamental problem is that a goal is by definition in the future, but still determines 
the behaviour in the present. This contradicts Newtonian mechanics, which assumes after all 
that the effects are already fully determined by their initial state or cause, which is by 
definition in the past. (The religious worldview has no a priori problem with purpose, since it 
assumes that God himself is purposeful and has to a certain extent imposed his goals on the 
world.) Cybernetics has solved this paradox by introducing circular causality: feedback.  
 

5.2 Feedback	  

Feedback can be defined as a process in which the effect leads back to—or affects—its own 
cause. In terms of systems theory, it can be viewed as a situation in which the output of a 
system is re-entered (directly, or via one or more intermediary systems) into the same system, 
so that it simultaneously plays the part of the cause. Circular coupling is an example of this.  
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Illustration: Imagine a video camera that registers an image (cause, input) and sends the 
image on to a screen on which the image is projected (effect, output). Now imagine that this 
video camera is pointed at the screen. In this situation, the image on the screen is both cause 
and effect of the process. In practice, this image will show all sorts of bizarre, abstract 
patterns, which can be understood as the result of a kind of self-organisation.  
 

 
 
There are two particular, fundamental cases of feedback: positive and negative. With positive 
feedback, the cause will reinforce itself. Let me illustrate this with an example: the feedback 
relationship between people with a cold and the spread of viruses. The more people have 
been infected (cause), the more viruses will be spread through sneezing and coughing 
(effect). The more viruses are spread, the more people will be infected (feedback to the 
cause). Thus, more infections lead, via more viruses, again to more infections. The total 

amount of infected people will thus continue to 
increase, until everyone who was susceptible to 
infection has been infected.  
 
Such positive feedback increases the deviation 

from the initial state (nobody infected). This leads 
to an explosive, ever-faster growth, which will 
only end when all available “resources” for the 
process (in this case uninfected people) have been 
exhausted. Other examples of this are the chain 
reactions leading to nuclear explosions, 
snowballing phenomena (such as an increasing 
debt, which leads to higher interest payments and 
thus further increasing debt), or vicious cycles 
(such as poverty which leads to poor education, 
leading to low-paid jobs or unemployment, and 
thus more poverty). Positive feedback is generally 
the basis of what we have called sensitive 
dependence on initial conditions, and can be seen 
as the aspect of nonlinearity that produces large 
effects from small causes.  
 
In the diagram, a positive causal influence 

(more → more, or potentially: less → less) is 
denoted by an arrow accompanied by a + sign. 
The two circularly connected arrows both have a 
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positive sign, which means that the feedback loop as a whole is positive. The same result 
would be achieved with two negative arrows, which after all negate each other’s influence 
(two negatives make a positive). Moreover, if we would replace the number of infections 
with the number of healthy (as yet uninfected) people, the influence of the viruses on this 
would be negative, while the number of healthy people would have a negative influence on 
the number of viruses. The net effect remains the same positive feedback: more viruses leads 
to less healthy people, and therefore to more viruses. In general, a circular connection is 
positive if there is an even number of minus signs (or if there are none). 
 
The opposite situation, where a cause weakens itself and deviations decrease, is called 
negative feedback. This is the case for a circular connection with one (or an uneven number 
of) negative influence(s). An example is the relationship between rabbits and grass. If there is 
more grass, there is more food for the rabbits, so the number of rabbits increases. This is a 
positive influence, as in the previous example. The influence in the opposite direction is 
negative, however: more rabbits eat more grass, so that less grass remains. This in turn 
reduces the number of rabbits, so that less grass is eaten and the grass gets a chance to 
regrow.  

 
Every deviation (whether more or less) thus leads to its opposite (less or more). Negative 
feedback can be seen as a nonlinear mechanism that reduces large causes to small effects. In 
general, this leads to a stable equilibrium, since every deviation of the equilibrium is reversed 
and the system returns to its equilibrium. Such equilibrium can be seen as a kind of implicit 

“goal” to which the system always returns. 
Another example can be found in the market 
mechanism: if a product becomes scarce, the price 
will increase (negative influence of supply on 
price). Producers will then receive more money 
and will therefore bring more of this product onto 
the market (positive influence of price on supply), 
which will bring down the price. 
 
Note*: negative feedback does not always lead to 
equilibrium. If there is a delay, i.e. the suppression of the 
deviation comes much later than the deviation itself, the 
deviation has time to grow, causing the correction to be 
too great, so that a deviation will now arise in the other 

direction. This new deviation will in turn be delayed in returning to the other side, and so on. The result is 
oscillation or a cyclical movement around the equilibrium. This is an example of a limit cycle (see 11.6).  
 

5.3 Control	  

The core concept of cybernetics is what we will call control. Other names for this concept 
are regulation, steering, or governing. A control system is a goal-directed system that tries to 
keep deviations of its goal under control through suppression of all disturbances. This goal is 
a state or a set of states that the system somehow prefers and which it therefore will try to 
attain if it is not there yet, and stay there otherwise. Control is an active form of negative 
feedback. This means that the target state (or goal) in itself is not an equilibrium that the 
system spontaneously reaches (like a ball that rolls spontaneously into a hole and remains 
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there), but a “far-from-equilibrium” state (see 3.6). The system has to actively intervene and 
expend energy to reach and maintain it.  
 
Thus, the system has to undertake actions to counter every deviation from the goal state. In 
cybernetics, this is called “compensation of perturbations”: the perturbations are all 
obstacles, problems, fluctuations or disturbances that cause the system to deviate from its 
goal. These are caused by all sorts of uncontrollable or unpredictable factors, such as e.g. 
accidents, interferences, conflicts, mistakes, or weather changes. They have to be neutralised 
or compensated for with the correct counter-actions.  
 
Example: If I try to reach the jetty on the other side of the river with my motorboat, I will be 
confronted with all sorts of perturbations, which make my boat diverge from the goal: gusts 
of wind, currents, dangerous rocks, etc. To reach my goal, I will have to keep adjusting my 
steering. If for example the wind blows my boat too much to the left, I will have to turn the 
steering wheel to the right to compensate for this disturbance. If after that, a sudden current 
drags me to the right, I will have to steer left to remain on course. Without these continuous, 
active corrections, the boat will never reach its goal, but drift out of control, subjected to the 
vagaries of wind and weather. It is this metaphor of the steersman (kybernetes in Greek) that 
has given cybernetics its name.  
 
What else is needed to efficiently steer towards the goal?  

• Perception: to suppress perturbations, you first have to perceive them; “senses” or 
sensors are therefore needed. These sensors supply information about the state of the 
system and its environment, and this information has to be interpreted or processed so 
that the precise deviation can be determined. 

• Knowledge: to decide which action is adequate for which deviation, knowledge is 
needed. For steering a motorboat, this is rather simple. However, if I would want to 
steer a sailboat, a car or a plane, I would have to undergo a lengthy process of 
education.  

 

5.4 An	  example:	  the	  thermostat	  

Let me clarify the concept of control system with a very simple, concrete example: the 
thermostat that keeps our house nice and warm, whatever the weather. The thermostat is the 
classical prototype of a purposeful, cybernetic system. The operation is very simple: a sensor 
in the thermostat reacts to changes in temperature. If the temperature is higher than a certain 
value that has been set by users (e.g. 21º C), nothing happens. However, if the temperature 
falls below that value, the thermostat turns on the heating system (for example by closing an 
electrical contact). This warms up the room and raises the temperature. As soon as the 
temperature is higher than 21º, the thermostat turns the heating off, so that the room can cool 
down again. When this cooling down causes the temperature to get below 21º, the heating is 
turned on again and the cycle starts anew. The net result is that the room temperature remains 
around the set temperature and fluctuates very little, whether it is warm or cold outside. The 
thermostat regulates or controls the temperature of the room and makes it independent of the 
outside temperature. 
 
Let us discuss the core cybernetic concepts in this example:  
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• the goal (or function) of the thermostat is to reach and maintain the set temperature 

• the perturbations or disturbances are the changes in the outside temperature that 
threaten to make the inside temperature deviate from the goal 

• the perception is the inside temperature as registered by the sensor 

• the action of the thermostat consists in turning the heating on or off 

• the knowledge of the thermostat consists in knowing that it should turn on the 
heating if the temperature is lower than the goal, and otherwise turn it off (imagine 
that the thermostat would do the opposite, continue heating when it is already warm 
enough, and let it cool further when it is too cold!) 

• the feedback is that the result (e.g. rising of the temperature) of the action (output) is 
perceived again by the thermostat (input). 

 
This feedback is negative, because the perceived deviation is compensated by an action in 
the opposite direction (for example by turning off the heating when it becomes too warm). If 
the action would go in the same direction, as we suggested above, the feedback would be 
positive, and the people in the room would either freeze, or get too hot. 
 

5.5 Core	  components	  of	  a	  control	  system	  

We will now generalise the example of the thermostat and discuss the fundamental 
components of an arbitrary goal-directed system (or “agent”) using the figure below. This 
diagram is a special case of the elementary input-output diagram in section 4.3, with 
perception as input and action as output, but with the addition of a goal, and the feedback 
from action to perception. Because action leads again to perception, the diagram is a closed 
loop. Because perception does not only depend on action, but also on what is happening in 
the environment, we need to indicate an additional input in the loop, namely the 
perturbations.  
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Example: 
 
To illustrate that this diagram is perfectly universal, we will now discuss a far more complex 
example: a multinational company. Such a company is a control system with the goal of 
making as much profit as possible in the long term. The company has at its disposal a large 
variety of actions to reach this goal: starting publicity campaigns, recruiting managers, 
dismissing redundant staff, automating production, lobbying politicians, etc. The 
perturbations are all the events in the environment over which the company has no direct 
control, but which influence the realisation of its goal: activities of competitors, demands 
from customers, the fluctuating economical climate, natural disasters that impede transport, 
decisions of governments to levy taxes, fluctuations in fuel prices, etc. Actions and 
perturbations together determine how successful the company is in the attainment of its goals. 
To estimate (perceive) this, the company needs to gather as much information as possible, 
about a variety of factors: market share, sales, production costs, brand awareness, reputation 
among the public, motivation of staff, etc. Based on this information, the company will 
decide to adapt its actions to the circumstances, and for example halt dismissals, because it 
observed that this damages staff morale and reputation too much, while it contributes little to 
cost reduction.  
 

5.6 Control	  hierarchy	  

The diagram above is too simplistic in the sense that it does not account for the fact that a 
system tends to have several goals, of which some are subordinate to others. Subordinate 
goals or sub-goals are goals that are of themselves not very important, and are only important 
because they contribute to the attainment of a higher or more general goal. For a lion for 
example, the most general goal is to survive and reproduce. Subordinate to this is the goal to 
still its hunger. On a lower level this leads to the goal to hunt prey, for example a zebra. 
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Subordinate to this are the goals to run to the zebra, pounce it, bite it in the neck, etc. Thus 
goals and sub-goals form a complex hierarchy of subordination or dependency.  
 
The diagram above can easily be extended to illustrate this hierarchy. It suffices to add a 
second control loop on top of the first one, so that the first, subordinate goal in fact becomes 
the result of the action of the second, higher goal. This means that the higher order control 
loop sets the goals of the subordinate goals as its action, depending on the perceived 
circumstances. Again, this can be best illustrated with the example of a thermostat.  
 

goal 1

perception action

disturbances

goal 2

 
 
The goal of a thermostat is to reach and maintain a certain temperature T. Our overarching 
goal however is to keep the temperature comfortable for the inhabitants of the house, but 
without wasting energy. For this, we can build a higher order control system that controls the 
thermostat by for example varying the goal temperature T depending on occupation. For 
example, if there are people in the room, set T to 21º. When the room is empty, set T to 16º to 
conserve energy. An infrared sensor can check whether someone enters the room. If the 
sensor detects people, the goal temperature is increased. As soon as they leave the room 
again, the goal temperature decreases. Such a control system can regulate several rooms at 
the same time, and set the thermostat for each room separately. This control system is a 
“meta system” (see 14.2) with two levels: control of the temperature within a room, and 
control of the goal temperature across all rooms.  
 

5.7 The	  three	  fundamental	  control	  mechanisms	  

Thus far, we have only discussed control through (negative) feedback. Although this 
mechanism is the most fundamental, there are two other important control mechanisms: 
buffering and feedforward. Let me list the advantages and disadvantages of each. The 
illustration below shows that these mechanisms are respectively special cases of sequential, 
parallel and circular connections. In this illustration, D stands for disturbance (perturbation), 
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B for buffer, R for reaction and E for the “essential variables” that define the goal. The width 
of the arrows indicates the size of the influence: the task of the control system is to make the 
influence of D on E as small as possible.  
 

D E

R

D E

R

D E

B

 
 

• Buffering	  

Disturbances D are passively absorbed or dampened by a “buffer” B. There is thus no active 
intervention. The advantage of this is that the control system does not waste energy for the 
preparation and implementation of compensating actions.  
 
Examples of buffers: 

• shock absorbers and bumpers in a car to intercept shocks 

• a well-insulated wall will protect the room from temperature fluctuations. This eases 
the work of the heating system 

• a water reservoir reduces fluctuations (e.g. dry periods) in the amount of available 
water 

 
Disadvantage: buffering can lessen the effect of uncoordinated fluctuations, but it cannot 
systematically drive the system to a goal that is itself not an equilibrium. For example, an 
insulated wall alone cannot keep the room warm: input of heat (in the form of fuel or 
electricity) is required for heating, since otherwise equilibrium would be reached when the 
inside and outside temperature are the same. Shock absorbers alone cannot keep the car on 
track: that requires a motor and a driver. 
 

• Feedforward	  

Disturbances D are compensated for by reactions R before they can influence the goal E. The 
control system thus anticipates the effect of the perturbations on the goal. This is important 
in situations where time is needed to implement the necessary actions: by starting to 
compensate in advance, the control system prevents that the deviation would last too long or 
become too large. Feedforward is crucial for deviations that need to be avoided at all costs, 
for example because they could destroy the system.  
 
Examples: 

• A thermostat with an external temperature sensor can turn on the heating when it gets 
cold outside, before the room gets cold. 
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• If a multinational company learns that a competitor is preparing a large publicity 
campaign, they will anticipate that this may lead to a loss in market share, which is 
difficult to recover from. To forestall this problem, they themselves can start a 
campaign as soon as possible.  

• A zebra cannot afford to be jumped on by a lion, since this attack might well be fatal. 
Thus, the zebra had better anticipate the attack and flee when the lion is still at a safe 
distance.  

 
Disadvantage: it is not always possible to anticipate exactly how the perceived perturbations 
will influence the goal. For example, if someone turns on the oven in the room, this will be 
enough to counteract the cooling down outside and the heating will not be required. The 
rumour about the new publicity campaign could be unfounded and the lion may not be 
hungry. Such mistakes in anticipation do not only lead to a waste of energy, but possibly also 
to overcompensation, such as a room that becomes too warm.  
 

• Feedback	  

Disturbances D are only compensated by actions R after they have caused a deviation from 
goal E. The advantage is that we can now be certain of exactly which deviation is happening. 
We do not need to know what has caused the deviation in order to anticipate possible 
consequences. The only thing we need to know is which action can compensate for this 
deviation. This simplifies the control problem.  
 
Examples:  

• The thermostat will normally only turn on the heating after the temperature has sunk 
below the goal temperature, so that there is no longer any doubt about the need for 
extra heating.  

• The central bank of a country will watch the economic growth closely. If this deviates 
too much from the goal, it will intervene by either increasing the interest rate, which 
slows growth, or decreasing the rate, which stimulates growth. Because of that, it is 
not necessary to know the very complex and hard-to-predict factors that influence 
economic growth. 

 
Disadvantage: a deviation from the goal state has to occur before the disturbance can be 
suppressed. Thus, feedback control is never perfect: there will always be deviations. By 
acting as soon as possible, we can however aim to keep those as small as possible.  
 

5.8 Knowledge	  

To actively suppress disturbances, a system has to: 

• be able to implement a sufficiently large variety (see 9.2) of actions to handle every 
perturbation. This is Ashby’s law of requisite variety.  

• know which action is appropriate for a given perturbation. This is the law of requisite 
knowledge. 
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This means that the larger the variety of perturbations that confront the system, the larger the 
repertoire of required actions, but also the more knowledge the system needs. Complex, 
variable environments thus require highly developed systems, which can handle wide-
ranging problems. 
 
At the most fundamental level, knowledge is expressed in the form of a condition-action 
rule: IF a certain perturbation is observed, THEN implement a certain, appropriate action. In 
short: IF condition, THEN action. Or even shorter:  
 
 condition → action 
 
Example: for the thermostat the following rules apply: 
 
 temperature too low (lower than goal temperature) → turn heating on 
  
 temperature high enough → turn heating off 
 
For the thermostat controlled by the presence sensor:  
 
 someone in the room → set goal temperature to 21º 
  
 room empty → set goal temperature to 16º 
 
If the system uses feedforward, knowledge will also be expressed in the form of predictions, 
where a condition that is not a deviation entails another condition, which could possibly be a 
deviation, and to which the system can react in anticipation. 
 
 condition 1 → condition 2 
 
Example: thermostat with external temperature sensor 
 
 outside temperature falls → inside temperature will fall 
 
In combination with the first rule of the thermostat, this implies: 
 
 outside temperature falls → turn heating on 
 
A system of prediction rules is called a model. The model represents processes in the 
environment in an abstract, simplified way. The model allows the system to anticipate 
perturbations or events. The model is however not an objective reflection of reality. It is a 
subjective representation of aspects that directly concern the system, and it serves to allow a 
goal-directed system to reach its personal goals. 
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Chapter	  6. Complex	  Adaptive	  Systems	  

6.1 Background	  

In the early ‘80s, the Santa Fe Institute for Complex Systems was founded in New Mexico. 
Its goal was to achieve the interdisciplinary study of complex systems, by getting scientists 
from different centres to work together around this theme. Some of the most famous 
scientists that have been connected to the SFI are John Holland, Stuart Kauffman, Brian 
Arthur and Chris Langton. The ideas of these scientists have meanwhile become more and 
more popular in the scientific community. This has led to a study area that is usually called 
complex adaptive systems (CAS), and more recently complexity science(s).  
 
This approach is related to and influenced by previous approaches, although it is conceptually 
less developed. Some of the new concepts of the CAS approach, such as “self-organised 
criticality”, “percolation” or “NK networks” are therefore more complicated and have less 
obvious applications than those of systems theory and cybernetics. I will therefore not discuss 
them in this introductory book. As a matter of fact, many of these concepts go out of fashion 
after a couple of years of popularity, when it becomes clear that they are not quite as 
generally useful as previously thought—in contrast to concepts such as emergence, fitness 
and feedback, which have become part of general scientific thought.  
 
The reason for the popularity of the CAS approach is mostly its innovative method to study 
complex systems: the use of computer simulations. This enables us to study more complex, 
less idealised systems. At the time of previous approaches, computers were after all not yet 
powerful enough to simulate really complex systems, so that most results were reached 
through purely theoretical reasoning.  
 

6.2 Agents	  

The computer models of the CAS approach are generally based on the concept of an agent, 
as the elementary, active component of the system that is being modelled. Examples of 
agents are cells in a body, individuals in a society, birds in a flock, buyers and sellers on the 
stock market, ants in an anthill, autonomous robots in a lab, or molecules in a chemical 
reaction. Although there is no universally accepted definition of an agent, the term usually 
means an elementary, goal-directed system, which can undertake different actions. The goal 
can be explicit or implicit, but it usually boils down to the agent trying to maximise its 
“benefit”, “success” or “fitness”. When several agents pursue the same goal, they will usually 
enter into competition, but they are potentially able to cooperate.  
 
In response to perceptions (incoming information), the agent will implement certain actions. 
For this, it follows simple condition-action rules. For example, IF the agent finds a piece of 
food, THEN it will eat it. Agents can sometimes learn or evolve individually and thus adapt 
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their behavioural rules. For example, if food with a blue colour turns out to taste bad, the rule 
will be adapted, so that the agent will only try to eat non-blue food.  
 
Their actions also influence other agents, which will react with actions of their own. For 
example, if an agent moves towards a piece of food, but sees that another agent has reached 
there before and has already eaten the food, it will change direction to a piece a bit further 
away. This may attract the attention of a third agent, so that it will also start moving towards 
the piece. In this way, an event or action somewhere in the system (e.g. a piece of food that 
appears or is eaten) will make several agents move, which will in turn incite others to action. 
This activity can continue without limit, or settle down in an equilibrium configuration.  
 

6.3 What	  is	  a	  complex	  adaptive	  system?	  

A complex adaptive system (CAS) is a collective consisting of a large number of interacting 
agents. (More recently, the term multi-agent system (MAS) has also been used.) Collective 
patterns emerge from individual actions, and the system itself is self-organising. The entire 
system is also adaptive: a change in the environment will lead to a change in the system. The 
system adapts to new circumstances, and will generally reach equilibrium with them, even if 
the individual agents are not necessarily adaptive. A typical system of this type exhibits to 
various degrees the most important mechanisms that we have discussed in earlier chapters, 
such as variation, natural selection, non-linearity, self-organisation, feedback, 
anticipation and hierarchy, but in a complex tangle of interactions of which the 
consequences are generally hard to predict.  
 
Examples of such CAS:  

• Markets: depending on the prices set by other agents, agents can decide to buy or sell. 
This in turn influences prices and thus the behaviour of other agents. This can lead to 
collective phenomena, such as equilibrium, inflation, or speculation.  

• Self-organising chemical reactions: the agents here are the interacting molecules that 
can self-organise to form dissipative structures. 

• Historical civilisations: individuals interact with each other and with their 
environment (crops, cattle, ...). This can lead to growth or on the other hand, to 
famine and the disappearance of the society (e.g. the collapse of the Maya empire). 

• Ecosystems: the actions of certain plants or animals influence others, which can lead 
to emergent phenomena such as symbiosis, parasitism, extinction, etc.  

 
Computer simulations allow us to better understand what is happening—or could happen—
with such systems under different conditions. The assumptions behind these simulations 
(rules of behaviour) are however rather simplified and artificial. Therefore they offer no 
guarantee that the results of the simulation will match the results in the real world. Since even 
very simple starting hypotheses can lead to very complex behaviours, it is not always clear 
how to interpret the results. On the other hand, this complex behaviour does characterise real 
systems, and that is one of the reasons that CAS simulations fascinate so many people. To 
illustrate, I will discuss some typical examples of such simulations.  
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6.4 Cellular	  automata	  

A cellular automaton is a highly simplified representation of certain dynamical processes that 
can demonstrate unexpectedly complex behaviour. An agent here corresponds to a “cell” on a 
type of geometric grid of cells (in one, two or more dimensions). A cell only interacts with 
neighbouring cells. At every step or sequential point of time, every cell will automatically 
change state, depending on the states of the neighbouring cells. The state can be “active” or 
“non-active”, but there can also be a choice between a more complex series of options. 
Although simple and deterministic for each individual cell, the evolution of all cells together 
is in practice often complicated and unpredictable (chaotic), exhibiting a virtually limitless 
variety of behaviours.  
 
This wealth of forms and behaviours has led the mathematician Stephen Wolfram to claim 
that all natural phenomena and the entire universe can be reduced to cellular automata. 
Although his (voluminous) book A New Kind of Science gives plenty of examples of cellular 
automaton models of natural phenomena, his statement has as yet not impressed the scientific 
world. A reason for this is that cellular automata are still too close to Newtonian 
reductionism, and ignore the more complex, asynchronous and indeterministic interactions 
that operate in the real world.  
 

Example: “Game of life” 
 
This is a two-dimensional “chess board” 
with square cells which can be active 
(black in the illustration to the left) or 
inactive (white). The rules are as follows:  

• if a cell is inactive and three of its 
neighbours (of the eight 
neighbouring cells) are active, it 
will become active (“alive”) in the 
next step 

• a cell remains active if two or 
three neighbours are active 

• in all other cases, the cell becomes 
(or remains) inactive. 

 
If you allow the game to evolve from 
different initial configurations, you will 
see all sorts of patterns of activity, which 
stabilise, repeat themselves, advance, 
reproduce, “die out”, and show other 
behaviours that remind us of living 

beings, but that are in fact very simple. Because of this endless variation, the game has long 
been popular as a screensaver. For an interactive demonstration, see: 
http://bitstorm.org/gameoflife/. 
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6.5 Swarms	  

A swarm is a simple, but realistic, representation of the collective behaviour of animals that 
move in groups, such as flocks of birds, schools of fish, swarms of bees or herds of sheep. 
The agents (the individual animals) are represented as points that move in a two- (or three-) 
dimensional space. For a beautiful interactive demonstration, see: 
http://www.red3d.com/cwr/boids/applet/. 
 

• behavioural	  rules	  for	  an	  agent	  in	  a	  herd:	  

• the agent always tries to move towards the place where most of the other agents 
are 

• the agent aims to maintain minimal distance from other agents 
 

Result: the agents form an irregular herd with those on the edge continuously trying to get to 
the centre, but in doing so, push other agents away. This is a realistic representation of the 
behaviour of large groups of herbivores (e.g. sheep, zebras, wildebeests) on an open plain, 
where they can be attacked by predators such as lions. Those on the edge of the herd are after 
all the most vulnerable to attack, while those in the centre run the least risk. On the other 
hand, they cannot stay too close together, because then there is not enough grass to eat for 
each individual.  
 

• additional	  rules	  for	  agents	  in	  a	  swarm:	  

• the agent tries to move in the same direction and with the same speed as the 
average movement of its neighbours 

• the agent maintains a minimal distance from obstacles 
 

Result: the agents form a gracefully moving, beautifully synchronised swarm, that regularly 
changes direction and flies around obstacles by splitting into two sub-swarms that flow 
together again after the obstacle. This is a simplified representation of the collective 
behaviour of “flocking animals” that are in constant movement, such as flying birds or 
swimming fish. 

 



50 
 

• Possible	  additional	  behavioural	  rules	  with	  two	  types	  of	  agents:	  	  

o the “predator” agents fly towards the closest prey 

o the “prey” agents flee from the predators 
 
Result: the simulation produces breathtaking collective “hunting scenes”. Think of a school 
of small fish, like herring, which is attacked by a group of sharks or tuna. The school of 
herring fans out when they perceive a tuna fish in their midst, but is corralled again when the 
tuna close in from several angles. During this, individual herring keep trying to be in the 
middle of as many other herring as possible, to reduce the chance of being eaten by a tuna.  
 

• An	  unusual	  variation	  on	  the	  swarming	  rules	  

We assume again that agents are guided by the average speed and direction of their 
neighbours, and that they maintain minimal distance to avoid collisions, but now give them 
two different targets: the “red” agents aim to go up as much as possible, and the “blue” aim 
to go down. Red and blue agents are thus in each other’s way and will be inclined to join 
their own kind that is moving in the right direction. However, when a red agent manages to 
reach the top layer, it will turn into a blue agent. In the same way a blue agent that reaches 
the bottom layer becomes a red agent.  
 
If you have paid attention, you may recognise an earlier example: the emergence of 
convection currents in a fluid that is heated from below: the red agents represent the warm 
particles in the fluid, and the blue agents represent the cold particles. Although I have not yet 
seen such a simulation, I would expect, provided the rules have been set precisely (e.g. 
concerning speed and mutual distance), that the result would indeed be that the “swarm” self-
organises in a regular, rotating pattern of Bénard rolls. This illustrates the universality of the 
concept of an agent, which is not restricted to the representation of living beings. It also 
shows that the thermodynamic approach of self-organisation and the more modern CAS 
approach are perfectly compatible.  
 

6.6 Artificial	  life	  

The field of artificial life aims to understand the fundamental behaviours and evolution of 
living beings and ecosystems, using computer simulations (or sometimes small robots). There 
are many different ways in which this can be done.  
 
A classic, but still very impressive, illustration can be found in the work of computer artist 
Karl Sims (see http://biota.org/ksims/). In a virtual, three-dimensional environment, he has 
allowed animals to evolve that need to perform certain physical activities, such as swimming, 
walking, or fighting for food, as efficiently as possible. The simulated environment is subject 
to realistic physical forces, such as gravity on land and viscosity (fluid resistance) under 
water. The bodies of the agents consist of a combination of square blocks of different sizes 
and shapes, which are stuck together with “joints”, so that one can move relative to the other. 
The movements are controlled by an elementary “nervous system”, which connects observed 
conditions with possible actions. The body and nervous system structures are initially 
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random, but subsequently evolve under influence of variation and selection. In the simplest 
scenario, the selection criterion is the speed with which the creature manages to move, taking 
into account physical forces. On land, this produces creatures that walk with two or more 
“legs”, some that shuffle forward like a snake, or even some who repeatedly allow 
themselves to tilt and “fall over”, like an acrobat that forms a wheel by falling from the feet 
to the hands and again to the feet. Under water, this similarly leads to a variety of swimming 
styles, which usually resemble those of existing animals, but which can be very unusual—
although they remain plausible. In the illustration below you can see some of the 
“swimming” creatures (a snapshot from the animated movies that you can download on the 
web). In a “combat situation”, agents have to try to pull a piece of food towards them as fast 
as possible, before their competitor can get to it. Here, evolution again leads to different 
strategies, sometimes based purely on speed, sometimes based on subtle tactics to trick the 
competitor out of the piece. 

 
 

Most artificial life simulations are however more abstract, and interested in general evolution 
and survival strategies in a simplified environment. This often takes the form of a two-
dimensional grid, like with a cellular automaton: agents are spread across different cells, and 
can move by regularly “transiting” to a neighbouring cell, as long as they follow the 
condition-action rules. An example of this is the Sugarscape environment, where food 
(“sugar cubes”) is spread out over a two-dimensional landscape, and where agents aim to 
obtain as much food as possible.  
 
The most universal situation, first programmed by biologist Tom Ray in his famous Tierra 
simulation, is the following: 

• Agents aim to collect “food”, “energy” or “fuel”. There is a limited amount of food in 
circulation, and agents can “steal” food from each other, or even “eat” each other, to 
recuperate food reserves of others. 

• Agents that find insufficient food to survive, die, so that natural selection takes place 
and only the best adapted survive. (This selection is more “natural” than Sims’, 
because it has not been concretely specified what the agents have to do (e.g. 
swimming or walking) to be selected.) 

• Agents that find more than a minimum amount of food have an energy surplus and 
can use that to reproduce. 

• During reproduction, small “mutations” are made in the behavioural rules according 
to which the descendants will try to get food. 

 
Result: we see the evolution of a growing diversity of agents of various “species”, which live 
for example as “plant”, “herbivore”, “parasite” or “carnivore” and thus compete or cooperate 
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with each other. These species have each adapted in their own way to the ecosystem that they 
together form.  
 
A fundamental question that needs to be addressed is to what extent agents and/or the 
ecosystem become more complex as the simulation lasts longer. In a sufficiently 
sophisticated environment (such as Tierra), the ecosystem and some of the agents do indeed 
become more complex, but this process eventually reaches a limit after which it appears that 
complexity no longer increases. Thus far, the virtual organisms are still much simpler than 
the simplest living being. This has caused artificial life researches to think more 
fundamentally about the evolution of complexity, hoping to come to an open-ended 
(unlimited) simulation of evolution. This should at least be able to produce consecutive 
hierarchical system levels (e.g. cells and multicellular organisms). We will discuss this 
problem later in a more abstract way, when we consider supersystem transitions.  
 

6.7 Simulated	  societies	  

Multi-agent simulations have become popular recently in sciences such as economics, 
sociology and psychology, in order to understand social interactions and the formation of 
markets and societies. The starting point is similar to that of an artificial ecosystem, except 
that the agents now all belong to the same “species”, and are therefore not supposed to “eat” 
or eliminate each other. Rather than striving for “food”, agents strive for “benefit” or 
“reward” (which in the simulation mostly amounts to the same thing). The emphasis is on the 
strategies that agents use to do transactions with each other, and how from those individual 
strategies, collective or social organisation arises. Such strategies to obtain as much “profit” 
as possible from the interaction with others have already been described mathematically in 
game theory, developed in 1947 through a collaboration between the cybernetician and 
mathematician John von Neumann and the economist Oskar Morgenstern. But as soon as 
several agents take part who do not all follow the same rules, the situation becomes too 
complex to describe mathematically. In that case, we switch to simulations.  
 
The starting point that has been used most often is the prisoners’ dilemma game, with the 
following rules:  

• an agent can help another agent (cooperate) or cheat on it (defect) 

• if both cooperate, both are rewarded 

• if both defect, both are punished 

• if one cooperates and the other defects, the defector gets the reward (which is larger 
than if he would not have defected), while the cooperator loses out (more than if he 
would not have cooperated) 

 
The intention is that an agent accumulates as much benefit as possible, and as little 
punishment as possible. Different agents have different behavioural rules or strategies to play 
the game: depending on what the other agent did in the previous “moves” of the game 
(cooperate or defect), the agent decides how to behave.  
 
The problem with the Prisoners’ Dilemma is that it is collectively best if you cooperate, while 
individually, the best strategy is to defect and hope that the other will not do the same. The 
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goal of the simulation is to find out whether collective cooperation can arise even if 
individual profiteers have the largest advantage in the short term. This simulation was first 
set up by political scientist Robert Axelrod, as described in his book The Evolution of 
Cooperation (1984). Axelrod turned the game into a tournament, inviting different specialists 
in game theory to come up with strategies to gain as much profit as possible in consecutive 
game rounds (an agent was always confronted with different opponents).  
 
Result: the agents that followed the very simple tit-for-tat strategy (if you cooperate, I 
cooperate; if you defect, I defect), did best on average (and thus won the tournament). The 
reason is that profiteers do not gain any advantage when they play against a tit-for-tat agent, 
because they get the same treatment, while tit-for-tat players who played against cooperators 
or each other got a benefit out of their cooperation.  
 
To discover whether evolution also leads to more cooperation in the long run, we introduce 
some more complex variations: those agents that gain a lot of advantage reproduce, the others 
die out.  
Result: in the end only tit-for-tat is left and everybody cooperates with everybody.  
 
If we allow mutation of behavioural rules during reproduction, we also get agents that 
cooperate in all circumstances. These will after all do equally well in a tit-for-tat situation, 
since everybody cooperates anyway. The presence of these “too nice” agents does however 
create an opportunity for the evolution of defectors who can exploit them without limit. As 
result, the defectors only need to compete with tit for tat, which suppresses their chances of 
winning, because tit-for-tat agents collect additional benefit when they play each other.  
Result: tit for tat remains in the majority, but with fluctuating subpopulations of pure 
cooperators and pure defectors.  
 
This looks like a simple but realistic representation of our society: most people are willing to 
cooperate, but expect something in return sooner or later (reciprocal altruism). If this 
expectation is not realised, their cooperativeness stops. Conversely, some people are naive or 
nice enough to help in all circumstances. This enables a small number of deceivers to gain an 
advantage without doing something in return. It is these cheaters that remind the majority that 
they have to remain careful, even if they assume that most people are honest.  
 
Let us look at more complex variations. If the agents only interact with their immediate 
neighbours, zones arise where everyone cooperates with everyone, and other zones in which 
everyone deceives everyone, with transition zones between them where both cooperation and 
defection take place. This is not an unrealistic representation of today’s world, in which most 
countries have a social, economic and legal system that guarantees reliable, cooperative 
transactions, but in which certain areas, such as Somalia or Afghanistan, live in an anarchy 
where only the right of the strongest counts. 
 
If the agents are divided into different “groups” or “families” (identified by specific labels), 
they will typically trust and help members of their own group, even if they have not yet had 
the chance to observe their behaviour, while they will a priori distrust members of other 
groups. The reason is that members of the same group will normally follow the same rules, so 
one can trust that they will respond to cooperative behaviour in the same way. The distrust of 
other groups whose rules you do not know, is a precaution that means that groups with 
defectors stand no chance and will eventually be selected against, while groups consisting of 
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only cooperators will accumulate advantage and thus grow. This may explain why “failed 
states” such as Somalia and Afghanistan are a very small minority, partly because individuals 
who get the chance emigrate from those regions to areas that are more cooperative. 
 

6.8 Simulated	  culture	  

Another interesting, but as yet less well-known application of the computer simulation of 
agent systems is the development of culture. Culture here can be defined as knowledge or 
behaviours that are transmitted from agent to agent. As far as I know, the first of these 
simulations, Meme and Variations, was programmed by Liane Gabora, a Canadian researcher 
who is affiliated with the Centre Leo Apostel of the Free University Brussels. The 
fundamental rules of this and similar simulations are as follows:  

• agents look for the best solutions to a problem 

• they can try to find a solution themselves through trial and error 

• they can also copy the best solution found by one of their neighbouring agents by 
imitating that agent 

 
Result: the group finds the best solutions if they partly imitate others and partly invent 
individually. If they only imitate, there is no creativity and the existing solution cannot be 
improved. If they only try individually, a lot of energy is wasted on failed attempts and 
unnecessary repetition, as they each have to reinvent the wheel. In the ideal case, achieved by 
experimenting until the optimal proportion of imitation to innovation has been found, good 
solutions will quickly spread among the “population”, but without precluding other agents 
from finding a better one.  
 
In a more complex variation, agents will not slavishly imitate their neighbours, but assess 
different ideas from different agents, based on certain criteria. They will then adopt the most 
“convincing” ideas, and in turn try to transmit these to others. This way, the most convincing 
ideas will quickly spread among the group, but enter into competition when one idea 
contradicts another. If we also allow variation of the spreading ideas (memes), a simulation 
of a cultural evolution appears, such as can be seen with the diffusion of fashion phenomena, 
jokes, or rumours.  
 
My colleague at the Free University Brussels, social psychologist Frank van Overwalle, has 
developed, with my input, a psychologically realistic simulation model for this, called 
Talking Nets. It attaches special importance to mutual trust among agents. The fundamental 
idea is that you will give little credence to the utterances of someone that you have often 
disagreed with in the past, while you will listen carefully to the ideas of someone that you 
normally agree with. On the other hand, someone that you normally disagree with will, 
knowing your scepticism, tend to make extra effort to convince you after all. The result is a 
complex dynamic, which can lead to the division of a group into “subcultures” which have 
very different opinions.  
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Chapter	  7. Complexity:	  fundamental	  concepts	  

7.1 A	  relational	  ontology	  

Now that we have discussed the historical developments of different approaches to the 
problem of complexity and evolution, it is time—using the insights that we have gained—to 
approach the foundations of the issue. This will allow us to formulate the core concepts that 
can be found explicitly or implicitly in these different approaches. Building on these 
foundations, we can then gradually try to work towards a coherent approach of the most 
advanced problems, such as the development of life, society or human intelligence.  
 
Ontology can be defined as the branch of philosophy that studies the most fundamental 
categories of phenomena, that is, the essence or being. In other words, we search for the core 
components or elements of reality. In the Newtonian worldview, these are the particles, that 
is, small pieces of matter, and the energy fields or forces that cause the particles to move 
according to specific trajectories in space and time. So the Newtonian ontology is 
materialistic.  
 
In the evolutionary-systemic worldview, this starting point is useless. After all, we want to be 
able to describe emergent properties and organisation, independent of its material 
components. Therefore, we need to search for elements that are more abstract. These abstract 
elements must allow for complexity from the beginning, rather than immediately reducing it 
to independent building blocks. Still, the elements themselves have to be as simple as 
possible, because otherwise we risk drowning in complexity from the start.  
 
This can be resolved by making the elements relational, that is, intrinsically interdependent 
or connected, rather than independent. Every element can only exist in relation to another 
element, and the network of relationships that develops in this way is the basis for complex 
organisations.  
 

7.2 Distinctions	  

Probably our most fundamental action is to distinguish. A distinction divides the world into 
two parts: that which belongs to the distinguished category, and that which does not. Some 
examples: big—small, light—dark, left—right, alive—dead, beautiful—ugly, ... Distinct 
phenomena are considered different in at least one meaningful aspect. Phenomena that are not 
distinguished are implicitly considered similar, that is, belonging to the same category, with 
the same properties. A distinction is not a “thing”, not an independent element (such as an 
elementary particle), but a relationship, namely the relationship of difference between a 
category of phenomena with a certain property and the complementary category of 
phenomena that lack that property.  
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If we would not make distinctions, it would be impossible to recognise any structure in, or 
say anything meaningful about, our perceptions or experiences. In other words, without 
distinctions every form of perception, thought or communication becomes impossible. We 
can only assign meaning to a phenomenon by placing it in a certain category X (that is, assign 
it the property X) and in that way show how it differs from other phenomena that do not 
belong to X. A distinction is therefore the most primitive element of every description or 
theory.  
 
Note that a distinction does not need to be exact or absolute: intermediate cases are possible 
where we cannot say with certainty whether something does or does not belong to category 
X, but at best that it has the property X to a certain extent. For example, is a man of 1.75 
meter “tall” or “not tall” (small)? At best, we can say that he is not very small, although we 
would not really want to call him “tall”. Conversely, we would classify a man of 2.20 meter 
as “tall” with no hesitation. Such categories are called fuzzy in mathematics: the dividing line 
between X and not-X is blurred, and where we place it will often depend on context.  

X

niet X

 
The abstract notion of distinction can be found in all general representations, such as 
language, logic, mathematics or systems theory, as a foundation on which more concrete 
descriptions can be built. Some examples of such fundamental, abstract distinctions:  
 
language: yes ↔ no 

knowledge: true ↔ false 

computing: 1 ↔ 0 

logic: proposition ↔ negation 

mathematics: set ↔ complement 

not X 
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topology: inside ↔ outside 

systems theory: system ↔ environment 

perception: figure ↔ background 

 
Although these classical representations, which are among others the foundation of the 
Newtonian worldview, explicitly assume distinctions, they generally forget to mention that 
distinctions cannot exist independently of one another. The Newtonian worldview is after all 
analytic or reductionist: it explains complex phenomena by dividing them into different 
elements or properties. Next to this reductionist model, we also need a holistic approach, 
which reconnects the distinct elements into a whole. This brings us to the second type of 
relational elements in our ontology: connections.  
 

7.3 Connections	  

Distinctions are only meaningful if they lead to other distinctions. That is, a link or 
connection needs to exist between distinctions or categories, so that our knowledge about the 
one category can also tell us something about the other. These connections can be best 
expressed in the form of the condition-condition rules that we have introduced above, where 
a condition expresses that a perception belongs to a certain category. For example:  

• IF something belongs to category X, THEN it also belongs to category Y: X → Y 

• IF something is a banana, THEN it is curved: banana → curved 

• IF you let go of a heavy object, THEN it will fall: let go → fall 
 
Such connections allow us to connect one category with another and to use our knowledge 
about the one to derive something we did not yet know about the other. Connections thus 
represent interdependence between distinctions.  
 
Note that connections can be fuzzy, just as distinctions. In that case, given the first category 
(IF) we can say something about the second category (THEN), but we cannot do so with 
certainty. Example: banana → yellow. Not all bananas are yellow (some are green or brown), 
but given that an object is a banana, there is a higher than average possibility that the object 
will be yellow. As we will see later, such conditional probability means that the connection 
gives us information about the object, even if we have no certainty.  
 
A distinction that does not lead to another distinction is worthless, useless, or meaningless, 
because it does not relate to the rest of the world. From a cybernetic point of view, we could 
say that the function of perception or communication is to give us potentially useful 
information, with which we could for example decide which action to undertake, or to predict 
which other condition will now also appear. In the words of cyberneticist Bateson: a 
difference has to make a difference to provide us with any information.  
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On the ontological level, this idea has been formulated most explicitly by the philosopher 
Leibniz as the principle of the identity of the indiscernibles. The principle states that if two 
phenomena, a and b, are in no way distinguishable or discernible, then they are identical (a = 
b), and there is actually only one phenomenon. Our original theory about two phenomena can 
thus be simplified by keeping only one. This is a very important epistemological and 
ontological principle, which is however often neglected, even by very intelligent thinkers.  
 
Example: the “zombie” 
 
This example has been devised by the philosopher Chalmers to try to show how difficult it is 
to understand consciousness. Chalmers defines a zombie as a being that looks exactly the 
same as a human being, and that behaves like a human in all possible ways, but that has no 
feelings or “consciousness” while performing its actions—a bit like a robot that mechanically 
carries out tasks according to its programming, without any emotions. “What is it that a real 
human has that a zombie lacks?”, Chalmers then wonders. He defines this as “the hard 
problem of consciousness”, which by definition cannot be solved in a scientific manner, since 
science only works with observable distinctions.  
 
If we apply the principle of Leibniz, however, normal humans and zombies are identical, 
since it is impossible to distinguish the one from the other. The distinction “consciousness  ↔ 
no consciousness” is only meaningful if beings without consciousness can be distinguished in 
some way from others, such as in the way in which they behave. This is for example how we 
determine whether someone is conscious, or whether someone is aware of a situation, such as 
a fast-approaching car. If we would not do that, we might as well assume that all people other 
than us are zombies, since we can never know for certain whether they really have the same 
feelings as we do, or whether they only simulate them. Chalmers’ “hard problem of 
consciousness” is thus, according to Leibniz’s principle, a false problem, which needlessly 
complicates matters.  
 
Although it may not be evident for everybody that distinctions are only meaningful if they 
are connected, the converse is self-evident: connections are only meaningful if there are 
different phenomena to connect. We can therefore decide that distinctions and connections 
are both necessary to describe reality.  

7.4 Order	  

One concept that always returns in 
discussions about complexity, self-
organisation and related phenomena is 
the concept of order. In practice, 
however, it turns out that nobody 
defines this concept very well. 
Intuitively, we associate order with 
regularity, i.e. the following of set 
rules. For example, the magnets in the 
magnetised material (section 3.2) all 
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point nicely in the same direction and none deviate. In a crystal (another example of self-
organisation), all molecules are at the exact same distances from each other, in a perfect 
geometric pattern (see illustration below). 
 
Mathematics offers a precisely defined concept to describe these kinds of situations, namely 
symmetry. A pattern is symmetrical if it is invariant under certain transformations. A 
transformation is a mathematical function that maps one part of a pattern onto another part. 
Invariance means that such an internal shift does not alter anything in the pattern. This is only 
possible when the different parts of the pattern are identical to each other.  

 
 
This is best illustrated using an example. 
In the illustration to the left you see a 
regular pattern that one could find for 
example on a piece of wallpaper. The 
pattern is symmetrical, because we can 
move it in the direction of the arrows, 
without changing the way it looks. That is 
because the circles, squares and other 
elements of the pattern are repeated at 
equal distances, in the direction of the 
arrows. This is the same kind of 
“translational symmetry” that you find on 
wallpaper or in crystals. 
 
Another example is mirror symmetry, 
such as that in the drawing of the skull 
below, where the left half is exactly the 

same as the right half, except for the mirroring. Symmetry means that to reconstruct the 
whole pattern, it suffices to know a part of it. For example, the left half of the skull suffices to 
reconstruct the right half, while for the “wallpaper” a part of the pattern with one circle, 
square and rectangle suffices to generate the rest of the pattern through shifts over regular 
distances. 

 
One part of the pattern determines the configuration of the rest, 
except for a small “shift”. This is a special case of connection: 
one component determines the other. IF we know the 
configuration of the first pattern, THEN we also know all the 
others. The repeating patterns are all connected, but intrinsically 
they mere variations of the same.  
 
If we now generalise this property to order overall, we come to 
the following conclusion: order is characterised by many 
connections, but few distinctions. In an ordered system, the 
components are homogenous or repetitive. The prototype of such 

a system is a crystal: here, all molecules are identical, oriented in the same direction, and 
positioned at equal distances from each other. If you know the configuration of one molecule, 
you know all of them. 
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Now extend this definition of order to the limit of maximal order, that is, only connections, 
no distinctions. This means that every part is the same as every other part, no matter how 
small the observed part is. In other words, there is no distinction or differentiation at all; 
everything is perfectly homogenous, you cannot distinguish anything from its surroundings. 
This equals perfect emptiness or vacuum. It follows from the principle of the identity of the 
indiscernibles: if no components or parts can be discerned, there are no parts, and therefore 
there is nothing.  
 

7.5 Disorder	  

Disorder, another core concept in complexity science, can now be defined as the opposite of 
order. This means that disorder is characterised by many distinctions, but few connections. In 
a disordered system, the parts are different and independent from each other. The prototype 
of such a system is a gas: the gas molecules move completely independently from each other 
and all have different speeds, directions, positions and mutual distances. Even if you know 
the state of one gas molecule perfectly, you still do not know anything about the other 
molecules.  
 
The peculiar thing however is that a gas is statistically homogenous: the probability of 
finding a certain molecule in a certain place is the same for all places. If this were not the 
case, by definition there would be a statistical dependence stating that one place differs in 
some systematic way from another place, and therefore a connection between these places. 
The law of large numbers states that if we consider a very large number of cases, then what is 
probable becomes what happens in practice: because there are so many molecules, the 
average (expected) number of molecules in a certain place is in practice virtually equal to the 
actual number of molecules. Since the probabilities and therefore the averages are distributed 
homogenously, this also means that the molecules are distributed virtually homogenously. 
This is why a gas has no structure or form.  
 
Now let us discuss the limit of maximal disorder: all distinctions, no connections. This means 
that every part, no matter how small, is different and independent of every other part. It is 
difficult to imagine such a situation. Yet this is a good description of the vacuum as it is 
postulated in quantum mechanics. According to this theory, quantum fluctuations constantly 
produce “virtual particles” in every point of empty space. These almost immediately 
disappear again, without leaving any trace. Every point in space is thus in a constant flux, 
independently of any other point. Yet in practice, such a space appears about as empty as the 
empty space of Newtonian mechanics.  
 
A more concrete illustration is the pattern of “snow” that you can sometimes see on a 
television screen when it does not receive a signal. In this case, the television tries to create 
pictures based on the “noise” of electromagnetic waves in the background. Each pixel is 
independent of every other one, and the colour value of this pixel changes continuously and 
unpredictably, creating the impression of whirling dark and light spots. However, if you look 
at the screen from further away, so that you can no longer distinguish the individual pixels, it 
appears as a uniform grey. The accompanying sound is called white noise. When this white 
noise is not too loud, your brain will soon stop paying attention to it, making it appear as if 
there is no sound at all. 
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 Conclusion: in the limit, we again end up with emptiness. This means that the limits of 
maximal order and maximal disorder become one. It is only when order or disorder are 
imperfect that we can distinguish them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Illustration: order (left) and disorder (right) both produce a uniform grey when they are seen 
from a sufficiently large distance. 
 
However, if you zoom in (illustration below), and look at both patterns from close by, it 
becomes clear that the pattern on the left is perfectly predictable or regular, and the pattern on 
the right is completely unpredictable.  
 

 
 
 
 

7.6 Complexity	  

• What	  is	  complexity?	  

The word “complex” is derived from the Latin complexus, which means folded together, 
entangled or embracing. This means that something is complex or “complicated” if it consists 
of two or more parts that are connected to, or entangled with, each other in such a way that it 
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is hard to take them apart; distinct components are stuck together. A complex is thus 
characterised both by distinctions and by connections. Later, “complex” also got the 
meaning of “difficult”, since it is difficult to analyse systems or problems with many 
mutually dependent components, and thus difficult to understand or solve them.  
 
To this, we can add that something becomes more complex the more distinctions and 
connections it has. Based on our earlier analysis, we can then decide that complexity exists in 
between order (many connections) and disorder (many distinctions). In the CAS approach, 
this intermediate zone is also called the edge of chaos, meaning the wilderness between rigid, 
“frozen” order and turbulent, chaotic disorder. This is the area where “interesting” 
phenomena happen: self-organisation, life, evolution, thought... Neither a crystal, where 
everything is perfectly ordered, nor a gas, where everything whirls together uncontrollably, is 
really interesting.  
 
This is not just a subjective assessment. As can be seen from the illustrations of order and 
disorder, our brains are set up in such a way that they soon stop paying attention to uniform 
patterns, whether these are intrinsically orderly or disorderly. A perfectly clear tone 
(sinusoid) or a very regular hum (such as the buzzing of a refrigerator) will soon become 
unnoticeable, just as much as a constant hiss. These kinds of background noises will typically 
only become noticeable when they suddenly stop, that is, when the homogeneity is broken. 
Likewise, your eye will pay no attention to a uniform, unchanging background, but direct 
itself to that which breaks the symmetry, that which stands out as being different or 
unexpected. The more complex the structure, the more it attracts attention—either 
consciously or subconsciously.  
 

• Examples	  of	  complex	  systems:	  

• The tropical rainforest: millions of different plants and animals (distinctions), that are 
all in some way or other dependent on each other (connections). 

• The brain: billions of neurons (distinctions), connected by trillions of synapses 
(connections). 

• Society: billions of individuals that are all doing something different (distinctions), 
but still influence each other in wide-ranging ways.  

 

• How	  do	  we	  measure	  complexity?	  	  

There have been dozens of attempts to define complexity in a measurable, quantifiable 
manner, in order to determine the exact complexity of a phenomenon. None of these 
definitions is however universally applicable.  
 
One of the most well known definitions is the length of the shortest possible description of 
the phenomenon. The idea is that the more complicated a phenomenon is, the harder it will be 
to describe it completely. One problem with this definition lies in the language used for the 
description. Certain languages (such as mathematics) can describe certain phenomena 
efficiently (e.g. a complicated geometrical figure such as a fractal), but are very inefficient 
for others (e.g. romantic feelings). For any given description, you will never be sure that this 
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description cannot be shortened by using another, more efficient, language. An even more 
basic problem is that according to this definition, the most complex phenomenon would be 
one that is completely random or disordered. Without order to simplify the description, every 
single part of the systems needs to be described in every single detail in order to be able to 
fully characterize the system.  
 
The reason for these difficulties is that complexity is not really measurable. There are after all 
many different ways to add distinctions and/or connections and thus increase complexity, but 
these cannot be compared with each other. Trying to add the total number of distinctions and 
connections is a bit like adding apples and oranges. For example, is a helicopter more 
complex than a plane or a tank? These phenomena are not really comparable. A motorbike, 
on the other hand, is more complex than a bicycle, since it contains all the parts of a bicycle, 
with a lot of extra parts besides. We may decide that complexity can at most determine a 
partial order relationship. This means that not everything can be ordered according to degree 
of complexity: A can be more complex than B, or vice versa, but A and B can also be 
incomparable. 
 

7.7 Differentiation	  and	  integration	  

We are however not so much interested in the static complexity of a phenomenon, but in its 
evolution. We especially want to ascertain whether complexity increases rather than 
decreases. According to our definition, complexity increases if the number of distinctions 
and/or connections increases. 
 
Increase of distinctions with decrease of connections means increase of disorder, not of 
complexity. An example is the melting of ice, where the water molecules, which initially 
were stuck together in the ice crystal, now begin to move independently. Another example is 
the disintegration of a society and its army into a number of competing fractions such as has 
happened in for example Somalia. Where the different groups were initially connected to 
each other through social rules and conventions, they now work each for themselves, which 
makes the situation in the country chaotic and unpredictable.  
 
Increase of connections with decrease of distinctions on the other hand, implies increase of 
order. An example is magnetisation, where independently oriented molecules now all align 
themselves in the same direction. A social example is the development of a totalitarian 
system that prohibits deviant opinions, independent parties and private initiatives, and that 
subjects everyone to the same rules. This makes the society more stable and more 
predictable, but also leads to stagnation, because innovation is hindered.  
 
Increase of distinctions is called differentiation, that is, increase of the internal diversity so 
that more different kinds of parts can be distinguished. Increase of connections is called 
integration, that is, the parts become more dependent on each other, and form a more 
coherent whole. Complexification (becoming more complex) can then be defined as: 
 
 differentiation + integration 
 
A physical example is the Bénard self-organisation: the initially independent fluid molecules 
begin to coordinate their movements into a coherent flow (integration). On the other hand, 
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the homogenous fluid divides into independent cells or rolls, each with its own flow pattern 
(differentiation). A biological example is the development of an embryo from a homogenous 
clump of cells to a baby that is ready to be born: the cells begin to divide into different types 
(e.g. skin cells, nerve cells, bone cells, ...) and thus produce organs that will form a 
coordinated, coherent whole. In history, we see such complexification in the evolution from 
groups of hunter-gatherers to agrarian and later industrial societies. The initially 
interchangeable individuals begin to perform more and more differentiated, specialised 
functions (e.g. warrior, priest, merchant, solicitor, architect, ...), but become more dependent 
on each other and on social structures (solicitors can for example not produce their own food, 
but need to rely on a network of farmers, transporters, shops, etc.). 
 

7.8 Organisation	  

The last term that is frequently used in the context of complex systems is organisation. We 
can define this as:  
 
 structure with function 
 
An example is a human organisation, which consists of individuals who interact according to 
certain communication channels (structure), and who do this in order to achieve a certain 
economic or social goal (function). A structure consists of a number of distinguishable parts 
that are connected to each other. “Structure” implies therefore a minimal degree of 
complexity, i.e. both distinctions and connections, but without emphasising the number of 
distinctions or connections. “Function” means that this structure has a certain goal or utility.  
 
Examples: 

• The brain clearly has goals; the rainforest does not. 

• A machine (such as for example a watch) has a function; a complicated assembly of 
loose parts does not.  

 
Both the brain and the watch show organisation. Although a rainforest is far more complex 
than a watch, it is still not organised. Note that according to this definition, the traditional 
examples of self-organisation, such as crystallisation, magnetisation, or Bénard convection, 
can better be placed under the denominator of “self-ordering” or “self-complexification”, 
since the created structures do not have a purpose.  
 
Note: The most realistic complex systems do however at least have an implicit purpose: to survive. Without 
this property, natural selection would have eliminated them a long time ago. The different parts and 
connections of such a system can then be interpreted as contributing to that purpose. In that sense, the 
system does not only show complexity, but also organisation. In this broader sense, even the rainforest or 
the Bénard rolls can be seen as “organisations”. The concept “function” with its connected concept 
“organisation” is therefore to a certain extent fuzzy, and depends on how we define “purposeful”. 
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Chapter	  8. State	  spaces	  

8.1 Models	  

I now intend to use the intuitive concepts of “distinction” and “connection” as basic concepts 
for the creation of a scientific model of an arbitrary system. A model is a simplified 
representation of a system, created by an agent, who is in this case the scientific observer. A 
concrete example of a model is a doll that represents a baby, or a map that represents a city. 
According to the scientific method, such a model is in principle meant to describe the system 
precisely and unambiguously, preferably quantitatively, although this description will in 
practice always remain an approximation. 
 
For complex systems in particular, this approximation will only provide us with a very rough, 
almost caricatural sketch of what the system has to offer. A street map of a city tells us 
absolutely nothing about the people that live in this city or about the city’s climate, while it 
reduces its cultural life to the locations of the main museums and concert halls. This 
simplification of reality is an essential feature of a model: if the model would be as complex 
as the system itself, it would not give us any advantage and be unusable in practice. Imagine 
a map of a city on a 1/1 scale, with each trashcan, stone or weed depicted in every detail! 
 
This simplification means that different observers who are interested in different aspects of 
the system will create different models that are hard to compare. Maps made by geologists 
will note relief, water basins and soil composition, but will not list street names or the 
functions of buildings. The maps of sociologists will note the income categories or ethnic 
composition of the population in the different districts of the city.  
 
The fact that a model is intrinsically limited and subjective does however not mean that it is 
scientifically unreliable or useless. The most important function of a model is to make 
predictions about how the system will behave in different circumstances, and in that way to 
help solve problems or achieve goals. A street map will for example allow you to predict that 
if you take the second street left and then the first right, you will be in front of the opera 
house that you are looking for.  
 
In this book, it is not my intention to make such predictions, but only to illustrate the core 
concepts of a model, using some very simple examples. This will enable us to understand and 
define a number of fundamental concepts. It is also not my intention to go into technical 
detail or make complicated calculations. It will suffice to show that this is in principle 
possible, for those who want to accurately describe, predict, design or simulate a system. 
Thus we will get a foundation that allows us to better understand existing scientific models.  
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8.2 Objects	  

Every model of a system starts with one or more objects. Objects are the primitive 
components of a system model, the stable “things” or elements in which one is interested. An 
object is a distinction of the type “system—environment”, in which the object of 
investigation (the system) is distinguished from everything that does not belong to the study 
domain (the environment). An object is a system, but without consideration of its subsystems. 
The first simplification of the model consists in seeing the objects as elementary, i.e. without 
distinct parts. Some examples of possible objects, depending on the type of model, are: 
“building”, “person”, “particle”, “car”. 
 
To belong to the type “object”, a distinction has to be stable. Objects remain equal to 
themselves. They are invariant. This means that they do not change under the influence of all 
sorts of transformations or manipulations of the system. Although the properties of an object 
can change, we assume by default that the object itself remains. For example, a car can 
change place, drive faster or slower, or even be repainted in a different colour, but it remains 
the same car.  
 
Example: the billiard ball 
 
Billiard balls that move across a billiard table form a very simple example that we will 
discuss in detail to clarify the properties of a model. An individual billiard ball is clearly an 
object: the distinction between inside (“system”) and outside (“environment”) remains, 
whatever the position or movement of the ball. I can manipulate the ball in many ways, but 
the ball itself remains.  
 
Note that the ball could in principle break into pieces, melt or evaporate (i.e. split up into its 
molecular components). This is however very unlikely, and a typical model of a game of 
billiards will not consider these possibilities. Objects are—like all elements of a model—
idealised, simplified representations of an infinitely complex reality. 
 
In a complex system, you can generally distinguish different objects or elementary 
subsystems. For example, the different billiard balls on a table together form a system. 
Elementary systems, such as particles, do not have subsystems, and form objects by 
themselves. 
 

8.3 Properties	  

Properties can be defined as distinctions, attributed to one or more objects, that vary across 
different situations. These are also called degrees of freedom, because the object has the 
“freedom” to assume different values of a property. For example, someone’s weight 
(property) can vary from week to week, but the person (object) remains the same. The 
position (property) of a car changes with every movement, but the object “car” remains 
invariant. Let us consider the primary types of properties.  
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• Binary	  properties	  

These are properties that the object at a certain time either has or does not have. The property 
therefore has two possible values: present or absent. In logic, a binary property corresponds 
to the elementary predicate P that is attributed to an object (sometimes called subject) o: 
P(o). 
 
Examples of binary properties: “red”, “heavy”, “high”, “beautiful”... 
 

• “Attributes”	  

These are properties with more than two possible values.  
 
Example: temperature with values “freezing”, “cold”, “tepid”, “warm” and “hot”, or values ... 
5ºC, 6ºC, 7ºC, ... 
 
The number of possible values of a property can be finite or infinite. An infinite number of 
values can be countable (discrete) or continuous. For example, the natural numbers, 1, 2, 3, 4, 
... are uncountably infinite: there are gaps between the consecutive numbers, so that we can 
list or count them one by one. Real numbers, on the other hand, do not have gaps between 
consecutive values: they follow each other uninterruptedly and can therefore not be counted.  
 
Example: the position of a billiard ball on a billiard table in the longitudinal direction has in 
principle a continuous infinite number of values.  
 

• Relationships	  

Relationships are predicates with more than one object: P(a, b, ...). Typical relationships have 
two objects, between which they establish a link.  
 
Examples: 
 

• Bite (man, dog)—this means: the man (object) bites (relationship) the dog (other 
object). 

• Left (a, b)—ball a is located to the left of ball b. 

• Ball a moves faster than ball b; ball a is located at a distance x of ball b.  
 

8.4 States	  

At a certain point in time, an object a may or may not be characterised by a certain property 
E. This determines the elementary expression or proposition: 
 
 E(a) : “a has the property E” 
 
This proposition is true if a does indeed have property E, otherwise it is false. 
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At any point in time, a system can be described using a number of such elementary 
expressions, that each ascribe properties to objects that are part of the system.  
 
If there is only one object, one can leave out said object, because in that case propositions 
correspond unambiguously with properties. 
 
Example: the proposition “ball a is located left-below” can be shortened to “left-below” if 
there is only one ball and therefore no ambiguity as to which object is positioned at the left-
below.  
 
Elementary propositions can be combined into compound propositions with the help of 
logical operators: conjunction (“and”), disjunction (“or”), negation (“not”). The conjunction 
of all propositions that are true for the system at a given point in time defines the state of the 
system. For example, “ball a is located in position (x1, y1)” and “ball b is located in position 
(x2, y2).” 
 
The state of a system gives us all relevant information about the system at that moment. 
“Relevant” here means necessary to solve problems or make predictions regarding the 
system. The relevance depends on the model and the specific problems it addresses. For 
example, the speed of a ball is relevant if we want to know where the ball will be located in 
the next moment; but the colour of the ball is irrelevant in that situation. In a model of a 
billiard ball that is only interested in the physical movements of the balls, the state will 
normally not include the property “colour”. However, if we are also interested in the rules of 
the game, and in which strikes are performed by which players, colour becomes relevant and 
therefore will be part of the model.  
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The definition of a state thus depends on which problems you want to solve. If the state 
provides insufficient information to answer the posed questions, you will generally need to 
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right-below left-below 
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distinguish additional properties (or possibly objects), and add these to the model. For 
example, the position of a ball alone is insufficient to predict movements: you will also need 
the speed (or momentum) of the balls. Position and momentum together determine the state 
of a billiard ball in this case. In the Newtonian worldview, it is assumed that you are able to 
make all relevant distinctions so that the model becomes deterministic and can answer all 
questions. Later theories, such as quantum mechanics and chaos theory, have however shown 
that you can never hope to gain complete information about a system, and that a model will 
always remain an incomplete representation of the behaviour of a system.  
 

8.5 State	  space	  

The state space of a system is the set of all possible states in which the system can find itself. 
This is a generalisation of our intuitive concept of the concrete, three-dimensional space in 
which we can move around freely to the abstract set of states between which a system can 
“move” when its properties vary. State space is sometimes also called phase space or 
configuration space.  
 
The state space is in general indicated with the uppercase letter S; the individual states with 
lowercase letters: s1, s2, s3, ... 
 
 S = {s1, s2, s3, ...} 
 
Suppose that our model contains N elementary propositions. Then there are 2N (2 raised to the 
power of N) possible “true-false” combinations, and therefore 2N states.  
 
Example: one object with three binary properties: “left–right”, “above–below”, and “in front–
behind”. That means there are 23 = 2 × 2 × 2 = 8 possible combinations of the different values 
of these properties and therefore eight states:  
 

1) left- above- in front  
2) left- above- behind 
3) left- below- in front  
4) left- below- behind 
5) right- above- in front  
6) right- above- behind 
7) right- below- in front  
8) right- below- behind 

 
More generally: consider one object with different properties, each with a number of values 
n1, n2, n3 ..., , then the number of states is equal to the product of the number of possible 
values for each property: 
 

 n1 × n2 × n3 × ... 
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• System	  consisting	  of	  several	  objects	  

Consider several objects a, b, c, ..., each having one property with a number of possible 
values na, nb, .... Again the number of states is equal to the product of the possible values:  
 

na × nb × nc × ... 
 
For several objects a, b, c, ..., each with several properties na1, na2, na3, ..., nb1, nb2, nb3, ..., the 
number of states is again the product of the number of values for all objects and all 
properties:  
 

na1 × na2 × na3 × ... × nb1 × nb2 × nb3 × ... 
 
Each property of each object determines a dimension of the space. The number of dimensions 
(dimensionality) of the state space is equal to the number of properties or degrees of freedom. 
For example, a billiard ball that can move from left to right (along the x-axis) and from top to 
bottom on a table (along the y axis) thus has two independent properties (ignoring speed for 
the moment) and thus moves in a two-dimensional state space. A system consisting of two 
such balls however has 2 × 2 = 4 dimensions or degrees of freedom. The more objects a 
system has (or the more properties an object has), the more dimensions the state space has.  
 
Mathematically, we can formulate this as follows:  
 
The state space S of the composite system is the Cartesian product of the state spaces Sa, Sb, 
... of the individual objects: 
 
 S = Sa × Sb × Sc × ... 
 
An individual state s is then represented as: 
  
 s ∈ S = (sa, sb, sc, ...) with sa ∈ Sa, sb ∈ Sb, etc. 
 
Reminder: the Cartesian product of two sets A = {a1, a2, a3, ...} and B = { b1, b2, ...} is equal 
to the set of all possible pairs formed from a combination of an element from the first set with 
an element from the second set:  
  
 A × B = {(a1, b1), (a1, b2), (a1, b3), ..., (a2, b1), (a2, b2), ...} 
 
A state of an arbitrary system can therefore always be written as a list (“vector”), consisting 
of the consecutive values of each of the properties for each of its objects.  
 
 s = (sa1, sa2, sa3, ..., sb1, sb2, sb3, ...) 
 

8.6 Distance	  metric*	  

A state space is more than a set of separate, independent states: states can be located closer to 
or further away from each other. There is a distinction between states that are near (“in the 



71 
 

neighbourhood”) and those that are far. The existence of such distinction between near and 
far defines a topological structure. This transforms the set into an elementary “space”. 
 
It is possible to define an elementary measure (in mathematics called “metric”) between 
states s1 and s2, that expresses the “distance” d(s1, s2) between these states as a number. This 
expresses our intuition that it will take more time or effort to bridge a larger distance than it 
takes to bridge a smaller distance.  
 
The simplest distance metric is equal to the number of distinctions or differences between 
states. This metric corresponds to the minimal number of elementary changes that one has to 
apply to transform s1 into s2. 
 
Example: the state left–above–in front, is located at a distance 1 of the state left–above–
behind, but at a distance 3 of the state right–below–behind. 
 
The inverse of distance is similarity: the closer two systems are together in the state space, 
the more they resemble each other, that is, the less differences they display.  
 
Application: if you compare the genetic codes (DNA strings) of two individuals, you can 
count the number of differences. This corresponds to the minimal number of mutations 
(elementary modifications in the DNA) that are necessary to change the one DNA string into 
the other. This gives us an indication of the time required to allow the one form to evolve out 
of the other, or—more precisely—the time needed to allow both to evolve from a common 
ancestor. In this way you can for example determine when humans and chimpanzees last had 
a common ancestor (about 7 million years ago).  
 
In the case of properties with more than two values, you need to define more complicated 
distance metrics, such as for example the traditional Euclidean or vector distance. For three 
dimensions, it looks as follows:  
 

d(x,y) = (x1 ! y1 )
2 + (x2 ! y2 )

2 + (x3 ! y3)
2  

 
 Application: if you search for information on the Internet, it is useful to know to which 
extent two texts are similar. For example, when you have found an interesting document via a 
search engine (e.g. Google), this allows you to find similar documents. The search itself is 
also based on similarity, in this case between the text that you enter into the search box 
(consisting of the word(s) that best represent your interest, e.g. “complexity evolution”) and 
the text of all available documents. The best results for the search are those documents that 
best resemble the query, i.e. that contain the greatest frequency of your search terms. One 
way to address this problem is by defining a state space of all possible texts, where a state 
corresponds to a list of the frequencies of all possible words in the text. Every word 
determines a property or dimension, and the relative number of times that that word appears 
in the text determines the value of that property for this text. By calculating the distance (or 
sometimes the angle) between the vectors that represent two texts, you can determine how 
similar or different these texts are. In this way, vector distances make it possible to quickly 
find information.  
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8.7 Dynamic	  systems	  

The primary application of state spaces is the prediction of change, i.e. the determination of 
how the state changes through time. At every point of time t, the system is located in a 
specific state s(t). From this state, it can make a transition to one or more other states s(t + 1) 
(or possibly remain in place). Which new state is chosen depends on the dynamics: the whole 
of  the “forces” that influence the system and cause it to evolve.  Such dynamics is generally 
represented using a so-called differential equation, which expresses the speed of the variation 
ds/dt of the state over time as a function of the present state. Such a differential equation 
assumes that the state space is continuously infinite, which makes things more complicated. 
A simpler form, applicable to discrete or finite state spaces, is the difference equation. This 
indicates the difference between the state s(t) and the subsequent state s(t + 1), and typically 
has the following form:  
 
 s(t + 1) = s(t) + f(s(t)) 
 
Here, f is a certain function of the current state s(t) that represents the different “forces” that 
cause this state to move to a new state. Since this book emphasises concepts, rather than 
mathematical techniques to make calculations, I will not further examine these functions and 
equations. Suffice it to say that there are very sophisticated methods that can thus determine 
the evolution of a state for systems that are not too complex, and for which we exactly know 
all objects, properties and forces. Such a system, of which we can perfectly predict the further 
movement through the state space starting from the current state, is called a dynamic system.  

tijd t

toestand s

baan

t t+1

s(t)

s(t+1)

 
We will here restrict ourselves to an overview of the qualitative properties of a dynamic 
system and their movement through the state space. From the newly-reached state s(t + 1), it 
will again move to the next state s(t + 2) and so on. Such a sequence of transitions can be 
represented as a path or trajectory in the state space. This goes from earlier to later states via 
the present state. A trajectory is formed by the sequence s(t) of all subsequent states in time t 
of the system. For example, a canon ball that has been shot follows a specific trajectory 

state s 

trajectory 

time t 
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through the air, depending on the force of the explosion, the orientation of the canon and the 
influence of gravity. A trajectory can be represented in a state space through a more or less 
curved or sinuous line that moves from past to future states via the present.  
 
The basic assumption behind a dynamic system is that the next state is completely 
determined by the present or initial state. This means that through a certain state, there can 
only be one (future) trajectory: there is after all no doubt or uncertainty possible about the 
next state. This allows us to represent the dynamics or potential evolution of the system in a 
convenient manner. If we represent the state space on a piece of paper, with every point 
representing a state, we can in this state note in which direction the trajectory will move 
through that state by means of an arrow (see illustration). All arrows together then show 
visually how evolution occurs in different regions of the state space. We can for example 
immediately see whether the trajectories through two adjacent states are moving towards 
each other or away from each other. Sometimes we see more complicated patterns such as 
spirals or loops, where the trajectories circle around a central region. Such a visual 
representation of a dynamic system is called a phase portrait.  
 

 
 

Of special interest are the regions where the arrows point inwards, but not outwards. This 
means that a trajectory can end up in this region from another part of the state space, but once 
inside, there is no trajectory leading out again. The core of such a region is called an 
attractor, since it appears to pull the trajectories towards itself (the grey areas in the 
illustration above). The existence of attractors makes it much easier to predict the further 
evolution: after all, it suffices to know that an initial state is located in the basin of an 
attractor (the region around the attractor from where all arrows and trajectories lead towards 
the attractor), to know that the system will necessarily also end up in that attractor. We will 
discuss these concepts in more depth later, when we will introduce the related visual 
representation of a fitness landscape. A repulsor, on the other hand, is a region from where all 
arrows lead away (the white circle in the illustration). 
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Chapter	  9. Information	  and	  Entropy	  

9.1 Introduction	  

Entropy and information are no doubt the most important quantitative concepts in complexity 
science. As we have shown before, complexity itself is a qualitative concept that cannot be 
measured in an unambiguous way, because it combines the opposite poles of order and 
disorder, and of distinction and connection. However, if we only look at distinctions, we can 
determine an unambiguous metric, called variety, which measures the total number of 
distinctions in a model. Although variety is used rarely in science (the concept was 
introduced by cyberneticist Ashby), it is a very simple and intuitive concept that offers a 
good basis from which we will deduce the better-known, but also more complicated, 
concepts of constraint, entropy and information, through step-by-step generalisation.  
 
In the new, systemic worldview, information and entropy play the central part that matter and 
energy played in the old, mechanical worldview. Many scientists therefore tend to postulate 
information as the third fundamental substance—after matter and energy—from which the 
universe is constructed. However, this representation is misleading and causes a lot of 
confusion, because information is not a “substance”. To begin with, information, contrary to 
matter and energy, is not conserved: it can disappear (for example if we forget something), or 
be created (for example if we observe something). Moreover, information is always to a 
certain extent subjective: it depends on the observer, for whom a certain signal can be 
informative or not, depending on the observer’s purpose and prior knowledge. Information, 
like the distinctions and connections that it measures, is fundamentally relational and thus to 
a certain extent relative.  
 
Entropy and information are subtle concepts with different facets. They are therefore often 
misinterpreted, even by scientific experts. Entropy is usually seen as a measure for disorder 
in a system, but as we will see, it is a bit more subtle than that. Entropy owes its reputation to 
the notorious second law of thermodynamics, which states that in a closed system entropy 
can only increase over time. Thus this law was the beginning of the end for the Newtonian 
worldview, which states that after all every change is reversible, and therefore that entropy 
would need to remain constant. We will discuss this law in more detail later, but to do so 
properly, we first need to clarify the meaning of entropy.   
 
At first sight, information seems a more self-evident concept, since it is the basis of the 
information technology that we are by now all familiar with. Most computer scientists have 
however forgotten the origin of the concept, as well as the fact that its definition is directly 
based on that of entropy. All subtleties and misunderstandings connected to the concept of 
entropy are thus also found in the concept of information. The confusion is so great that it 
sometimes happens that one scientist proposes a definition that is the opposite of another 
scientist’s definition. We will try to avoid this problem of the “sign” (positive or negative) by 
defining information as a difference that can be either positive or negative, depending on its 
starting point. More generally, we will try to create clarity in this crucial but confusing matter 
by continuing to build on our ontology of distinctions. This brings us directly to the concept 
of variety.  
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9.2 Variety	  

The state space is, as we have seen, the space of all possible states that the system can reach. 
The larger the state space, the more possibilities, “space” or “freedom” the system has at its 
disposal, but also the larger the variety of states or manifestations that the system can adopt. 
 
Variety is a measure for the size of the state space, or the number of distinct possibilities. 
Variety V is defined as the logarithm to the base 2 of the number of elements | S | of the state 
space S:  
 
 V = log2 | S | 
 
Reminder: the logarithm of x to the base 2 is the inverse of the function 2 to the power of x, 
that is, log2(2x) = x. 
 
It follows that if | S | = 2N, then V = N. 
 
V is therefore equal to the number of binary distinctions (see 8.5). 
 
V is however also useful for properties that are not binary. For example, for one property with 
five possible values, V = log2 5 = ± 2.322. 
 
Note: V will have to be defined differently if the number of values is infinite, because the logarithm of 
infinite is still infinite. Simplest case: V = number of dimensions (“degrees of freedom”).  
	  
The unit of variety is the bit. If a system has a variety of one bit, this means that the system 
has exactly two states or possibilities (“1” or “0”, “yes” or “no”) to choose from. A variety of 
N bit means 2N possibilities.  
 

• Why	  do	  we	  use	  logarithms?	  

The essential property of the logarithm is that it reduces a multiplication to an addition:  
 
 log (a × b) = log a + log b 
 
As we have seen in 8.5, the number of states in a state space is equal to the product of the 
number of values for each property, or to the number of states for each object. The variety of 
such a “product” state space is therefore simply the sum of the varieties for each of the state 
spaces. This means that if you add objects or properties to the model, you only have to add 
the variety of those new elements to the rest. The fact that you can work with sums makes the 
calculations a lot easier.  
 
Example: if one billiard ball has a variety V, then a billiard game with two billiard balls has a 
variety of V + V = 2V. 

• if a billiard ball has variety Vb and a cue has variety Vc, then a game consisting of one 
ball and one cue has variety Vb + Vc 
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• with 3 balls and 2 cues, the variety is: 3Vb + 2Vc 
 

9.3 Constraint	  

Constraint is the opposite of freedom: it is that which reduces the number of options or 
possibilities. This restriction of freedom is in general not enforced from the outside, but 
intrinsic to the system.  
 
Definition: there is constraint on a system if all conceivable combinations of properties are 
not actually possible in practice. This means that the factual set of possible states is only a 
part of the total state space.  
 

• Example:	  billiard	  with	  one	  ball	  

The state space for the ball consists of all possible positions on the billiard table. Add 
constraint: place a beam in the middle of the table, so that the ball can only move in the left 
part. The ball is “constrained” to remain on the left side; it is “restricted” or “confined” to the 
left part. The number of possible states has been halved. The variety has been reduced with 1 
bit (logarithm of the factor 2). 
 

• Example:	  state	  space	  of	  a	  berry	  

Let us assume that the model of a berry distinguishes two binary properties: colour with 
values “red” or “green” and size with values “large” or “small”. Two properties with two 
values each means 2 × 2 = 4 states and therefore V = 2 bit. In practice, however, all green 
berries turn out to be small (because they are unripe) and all red berries large. This means 
that only two states are possible in practice: (green, small) and (red, large). This means that V 
= 1 bit. There is thus constraint or restriction that excludes or forbids the combinations 
(green, large) and (red, small).  
 

• Example:	  billiard	  with	  two	  balls	  

The state space for two balls is the product of the two individual state spaces, i.e. the set of all 
pairs of the form (position 1, position 2), where position 1 denotes an arbitrary position on 
the table for ball 1. Now add constraint: stick the balls together. The first ball can still take an 
arbitrary position on the table. The second ball on the other hand becomes extremely 
restricted in the choice of remaining positions, since it necessarily needs to stay at the same 
distance to the first ball. The state space for two balls stuck together is much smaller than that 
of two independent balls.  
 
Constraint C is defined as the maximal variety minus the actual variety: 
 
 C = Vmax – V 
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This means: C represents the loss in variety or freedom relative to the best conceivable 
situation.  
 
Example: berries: C = 2 – 1 = 1 bit; billiard table divided in two: C = 1 bit 
 
Constraint may seem negative for the system, since it restricts its freedom, but it is in general 
positive for the observer. The observer will after all know better where the system is located, 
and will therefore have more control over it. With the example of the berries, it suffices to 
know that a berry is small (for example by grasping it), to be able to deduce that it is also 
green, even if it is dark and you cannot distinguish the colours. 
 
Constraint on a system consisting of several objects will generally lead to a relationship or 
dependence between the objects. For example, with balls that are stuck together, the position 
of the one ball is dependent on the position of the other. In the example of magnetisation, the 
direction of each magnet is determined by the direction of the others. Constraint can thus be 
seen as a measure of order: mutual dependency or connection.  
 

9.4 Entropy	  

Imagine that we do not know the precise state s of a system, but only the probability P(s) that 
a system would be in state s. This is normally the case for systems with a large number of 
components, where we cannot determine every property for all components. In that case, it is 
useless to determine the variety by adding up the different possible states, since different 
states will generally have different probabilities. However, we can easily generalise the 
concept of variety for this more complex situation, leading to what is called the entropy H. 
For the probability distribution P(s), this is defined as follows:  
 

H(P) = ! P( s). log P( s)
s"S
#

 
 

Thus, entropy is calculated as the sum over all states of the logarithms of the probabilities of 
these states, multiplied with the same probabilities. The logarithm is still defined to base 2. A 
minus sign is added to the sum, because the logarithm of a number smaller than 1 (which is 
by definition the case for a probability P(s)) is negative. Otherwise, the sum would be 
negative. Although this formula looks complicated and not very intuitive, it is so important 
that we have to investigate it.  
 
Entropy is a measure for uncertainty, or our lack of knowledge regarding the state of the 
system: the less we know, the greater the entropy. This is best clarified by means of some 
special cases.  
 

• Minimal	  entropy:	  

If we are certain that the system is located in state s0, i.e. P(s0) = 1, P(s≠s0) = 0, then:  
 
 H(P) = 1·log 1 + 0·log 0 + 0·log 0 + ... = log 1 = 0. 
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This is minimal entropy or no uncertainty. In other words, we have full knowledge or 
information about the state. If we draw the corresponding probability distribution (below), we 
see one peak for s0, where the maximum value 1 is reached, while all other states remain 0.  
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• Maximal	  entropy:	  

Now imagine that we have no indication at all that a certain state si would in any way be 
more or less probable than any other state. This means that all states have the same 
probability: 
 

 P(s) = 1/K, with K = | S | = number of states in state space S.  
 
Then: 
 
 H(P) = – K · (1/K) · log (1/K) = log K = V.  
 
That means that the entropy is reduced to the logarithm of the number of states, or the 
(maximal) variety V. Here, entropy reaches its maximum. This is the situation where we have 
absolutely no knowledge or information about the state of the system, and where our 
uncertainty is therefore the largest. When drawn this gives a completely flat, homogenous 
probability distribution, where all states have the same value 1/K.  
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• Intermediate	  entropy:	  

In the intermediate case, i.e. probabilities that are different from each other, but that do not 
reach the maximal value 1, entropy H has an value intermediate between the two previous 
values:  
 

V  > H(P)  > 0. 
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The more even or homogenous the probability distribution (i.e. the less differences there are 
between the probabilities for the different states), the larger the entropy H. The more 
heterogeneous the distribution (i.e. the higher and narrower the “peaks” of states with a high 
probability relative to other states), the lower the entropy. In the figure below, two 
probability distributions in a state space with 10 states are placed side by side. For the more 
“even” distribution, shown with light-grey columns, H = 3.04; for the more “peaked” 
distribution, shown with dark-grey columns, we find the smaller value H = 2.33. The 
maximal entropy is: H = log2 10 = 3.32. 
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• Interpretation	  

Entropy is a direct generalisation of variety. This means that it can be understood as a 
measure for the freedom of the systems to adopt different states. It can also be seen as a 
measure for our lack of knowledge (uncertainty) about the system. Thus we can say very 
little about a system with high entropy.  
 
Entropy can also be seen as a measure of disorder. Freedom for the system means 
independence of its components, and therefore distinction, but no connection. Even if we 
would know the state of a part of a system with high entropy, we would in general still know 
little about the other parts. Conversely, this means that a system with low entropy could be 
seen as ordered: since we already know almost everything, it is perhaps enough to know the 
state of a small part to also be able to determine the state of the rest. 
 
Note that this interpretation in terms of order assumes that there are connections between the 
parts of the system, which are responsible for decreasing our uncertainty. Until now, 
however, we have only paid attention to the distinctions in our formalism of the state space, 
and the connections therefore do not play an explicit part in the definition of variety and 
entropy. This is a shortcoming of the representation of a system in terms of state spaces, 
which therefore makes the (currently used) interpretation of entropy as disorder precarious.  
 

• Important	  note:	  thermodynamical	  entropy	  

The above is a definition of so-called “statistical” entropy (based on probabilities). It was 
introduced by the physicist Boltzmann, and generalised by the cyberneticist Shannon. There 
is however also “thermodynamic entropy” (cf. 3.1), which is a measure of the spread or 
dissipation of energy in the form of heat. In many cases (as originally foreseen by 
Boltzmann), statistical and thermodynamical entropy coincide, because dissipation means 
that the distribution of energy becomes more homogenous. Statistical entropy is however a 
more general concept: it can also be used in models in which heat or energy have not been 
defined. Statistical entropy depends on our knowledge, and can therefore change when our 
knowledge increases or decreases, even while the thermodynamical entropy does not 
necessarily change.  
 

9.5 Information	  

Information is that which reduces our lack of knowledge or our uncertainty. Information can 
therefore be defined as decrease in entropy. Suppose that a system initially has entropy 
H(before), and that we get information I about the system (for example by observing it, or 
through a tip that someone gives us). This leads to the new, lower entropy H(after). The 
received information is: 
 
 I = H(before) – H(after) 
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Special cases: 

• Suppose that H(after) = 0 (we now have certainty about the state of the system). 
Then:      I = H (before). 

• Now suppose that H(before) = 0 (we were certain about the state of the system). Then      
I =  – H(after), in other words the information received is negative; we have lost 
information. 

 
These special cases explain why some authors define information as equal to entropy, and 
others as the opposite of entropy. We can however not define information in se, like we 
defined entropy and variety. Information indicates the result of a process (typically an 
observation or communication process) that changes our knowledge. This implies the 
comparison between two situations, before and after, or with and without, the provided tip.  
 
Just as for variety, constraint and entropy, the unit for information is a bit. This is the same 
bit with which the memory capacity of a computer is measured, or the transmission speed of 
a communication network. This formula for information and the bit measure for information 
transmission were developed by Shannon to enable the measurement of the capacity of 
communication channels (e.g. telephone lines). Below are the definitions of some common 
units of information storage or transmission that are derived from the bit:  

 1 Byte = 8 bit (typical length of one character sign in the ASCII alphabet) 

 1 Kilobyte (KB) = 1000 (or more precisely 1024 = 210) Byte 

 1 Megabyte (MB) = 1 million Byte 

 1 Gigabyte (GB) = 1 billion Byte 

 10 Mbps = 10 million bit per second 
 

• Examples:	  

The answer to a binary “yes-no” question (for example, “Is it raining?”) provides 1 bit of 
information—assuming that the two answers have the same probability. 

If the probabilities are different, the obtained information is however smaller than 1 bit. For 
example, imagine that you ask the question “Is it raining?” in the Sahara. The probability 
that the answer to that question will be “yes” is very small. In most cases, the answer “no” 
will only confirm your expectations and hardly give any information at all. Only in the 
exceptional case that the answer is “yes”, did you really get significant information. 
Suppose P(no) = 0.99 (i.e. there is a 99% chance that it is not raining), and therefore P(yes) 
= 0.01, then: 

 
I = – 0.99 · (log2 0.99) – 0.01 · (log2 0.01) = 0.08 bit 

 
This can also be seen as the average (weighted according to the probability) of I(no) = - log2 
0.99 = 0.014 and I(yes) = - log2 0.01 = 6.64. I(no) is therefore much smaller than I(yes), but 
because “no” occurs much more frequently than “yes”, it weighs much heavier in the 
information you obtain. 
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The answer to a question with more than two possible answers generally gives you more 
than 1 bit of information. For example, if the possibilities are “sunny”, “sun and clouds”, 
“cloudy”, “showers” and “thunderstorm”, each having the same probability, then the 
weather forecast gives you log2 5 = 2.322 bit of information.  

 

• Application:	  compression	  of	  data	  

Most data (for example in natural language) contain far less factual information than you 
would expect if you would count the number of letters or characters used to express these 
data (on a computer, 1 character typically corresponds to 1 byte). The reason is that the 
probability of the occurrence of letters in a language is not at all homogenous. For example, 
in English, “e” occurs more frequently than “x”, “er” appears more frequently than “yr” and 
“the” appears more frequently than “hte”. In principle, a text in such a language can be 
recoded so that the same information is presented with fewer letters. The most efficient code 
is the one where every character would have the same probability of occurrence, because 
then the original entropy H(before) is maximal (homogenous probability distribution), and 
the same will then apply to the obtained information I for a message of a certain length.  
 
Concretely, we could achieve this by replacing frequently occurring combinations of letters 
by one single, new character. This would greatly reduce the number of required characters. 
To prevent having to create too many new characters (which would increase the number of 
distinctions and therefore the entropy), we can replace rarely occurring letters or 
combinations by a combination of other, existing signs. This will make the text a bit longer 
again, but since this by definition happens rarely, it will not matter a lot.  
 
This kind of recoding is called compression, because it reduces the “space”, measured in bits, 
that data take up in the memory of the computer or during transmission, so that more 
information can be stored or transmitted. It is because of compression that we can download 
complex files such as pieces of music, photos and movies from the Internet without having to 
wait too long and that we can store them on disks with limited capacity. The theoretical 
problem with compression is that we do not actually know the most efficient way to 
compress: if we search a bit further, we can always find a shorter, even more compressed 
coding. This is the same problem that I have already mentioned with the attempts to define 
complexity as the length of the shortest possible description.  
 
On the other hand, it is not really recommended to find the most efficient coding. A non-
efficient coding has what is called redundancy: it contains more characters than necessary. 
But that also means that it does not really matter if a character is accidentally left out or 
misread during transmission. Redundant codes (such as natural language) have the advantage 
of robustness: mistakes can in general easily be corrected, because the remaining, correct 
characters still provide us with enough information to infer the missing or incorrect 
characters correctly. Even a txt full of speling missteaks can be nderrstod acccrastely. 
 
Interpretation: Information can again be interpreted as a measure of constraint or order: the 
more information we have about the state of a system, the fewer possibilities remain for the 
system. 
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Note: Information or entropy can also be used to measure the mutual dependence of components. For this, 
one does not start with P(s), but with P(sa|sb). This is the conditional probability that component a is in a 
state sa, given that b is in state sb. 
 
This defines H(a|b), i.e. the uncertainty about the state of a, given the state of b. The smaller H(a|b), the 
more certain we are about the state of a if we already know the state of b, that is to say, the more 
information b gives us about a. H(a|b) can thus be seen as a measure of the (absence of) connection 
between b and a. 
 

9.6 Limitations	  

To what extent can variety, constraint, entropy or information be used to measure 
complexity? Variety and entropy measure the degree of disorder or indeterminacy. This is 
sometimes called “disordered complexity”, but is not really complex. Constraint and 
information measure the degree of order or definiteness. This can perhaps be seen as a 
primitive measure of dependence, but not of complexity.  
 
As a matter of fact, complexity increases only if both entropy and information increase. This 
seems paradoxical, since increase of the one has been defined as decrease of the other. Still, 
we can imagine a situation in which both in a sense increase. This does however require the 
expansion of the state space with additional distinctions (objects and/or properties). A larger 
state space implies greater variety / entropy. At the same time, the connections (relational 
constraints) between the components (objects or properties) have to increase. However, to 
describe these kinds of processes, we also need a distinction dynamics, that is, a theory that 
explains how distinctions can increase or decrease over time. 
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Chapter	  10. Variation	  and	  selection	  principles	  

10.1 The	  dynamics	  of	  distinctions	  

We are now interested in the evolution of a system over time. We have seen in the section 
about dynamic systems that this can be predicted using a trajectory through the state space. 
This is a classical way to describe change, which can be traced back to Newtonian 
mechanics. The question that we now ask however is: how do complexity and the related 
phenomena of variety, entropy and information change? To answer this question, we have to 
extend the Newtonian view of trajectories, and allow for trajectories that are not uniquely 
determined.  
 

• Newtonian	  dynamics	  

In Newton’s mechanics, every state is unambiguously followed by a unique other state. There 
is no uncertainty or unpredictability, since the initial state (cause) completely determines the 
following state (effect), and vice versa. This implies that the trajectories through the different 
initial states will always remain parallel: they do not intersect. Otherwise, when you hit an 
intersection (bifurcation, see 3.7), further movement would not be predetermined, since the 
state at the intersection point would have the choice between two different trajectories.  
 
Therefore, all distinctions are conserved: two different initial states correspond to two 
different final states, and vice versa. Variety, entropy and information are therefore constant 
too. Our knowledge about the initial state is no larger or smaller than our knowledge about 
the final state. Information is retained: it neither increases nor decreases. We can summarise 
this form of dynamics or evolution as distinction conservation.  
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• Attractor	  dynamics	  

Example: a ball rolls into a hole. Whatever its starting point, it will always roll towards the 
deepest point and come to a stop there. The state at the deepest point thus plays the role of an 
attractor. The ball cannot get out of the hole on its own: the movement is irreversible.  
 
Here, distinctions are erased. Indeed, different initial states or trajectories all come together in 
the same attractor or final state. Variety decreases, information increases. We did not know 

where the ball 
was initially, 
but we are now 
certain that it is 
in the deepest 
point. This is a 
form of 
selection: of the 

different 
possible states, most are eliminated and finally one remains. Selection can therefore be seen 
as the dynamic equivalent of constraint: through this process, the state space is reduced to a 
subspace (in this case with only one state). We can summarise this kind of evolution or 
dynamics as distinction destruction.  
 

• Stochastic	  dynamics	  

Example: a ball rolls down from an unstable position at the top of a hill. We do not know in 
which direction it will roll down, and cannot predict where it will end up. The process is 
stochastic, which means non-deterministic.  

time t 

state s(t) 
trajectories 

1. distinction conservation 
2. distinction destruction 
3. distinction creation 
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Here, distinctions are created. The same initial state will indeed give rise to a variety of 
possible final states. If the experiment is repeated, the outcome will always be different. 
Variety or entropy increases, and information decreases. Initially, we knew exactly where the 
ball was, afterwards we no longer know. This is the equivalent of variation: the creation of 
additional possibilities. We can summarise this type of evolution / dynamics as distinction 
creation.  
 

• General	  evolution	  

A general process will be a combination of subprocesses characterised by distinction creation 
(variation), distinction destruction (selection) and distinction conservation (causal evolution). 
Certain distinctions will be conserved / created / destroyed at certain moments, depending on 
the forces that act upon the system.  
 
If we start from a single state (one distinction), this single state can only be conserved or split 
into different possible states (distinction creation). As soon as there are more distinctions 
(states), these can again merge, as a whole or in parts (distinction destruction). This is a 
general scheme for an arbitrary process that starts from a certain initial state, in which we can 
recognise the consecutive phases of distinction creation and distinction destruction (see 
illustration). 
 
 

distinctie
creatie

distinctie
destructie

Begintoestand

eindtoestand 1 eindtoestand 2

intermediaire 
tostanden

 
 
In practice, both phases will happen together, but by separating them conceptually, we may 
hope to get a better insight into the components of the process. A theory (“dynamics”) of 
such processes should give us an idea of the “forces” or “mechanisms” that govern these 
phases. We will now discuss the most fundamental of these mechanisms, with the help of 
examples and basic principles.  
 

distinction destruction 

distinction creation 

initial state 

final state 1 final state 2 

intermediate 
states 
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10.2 Variation	  without	  selection:	  drift	  

A system that is left to its own devices will in general vary randomly, under the influence of 
all kinds of unknown disturbances. We assume no systematic force or preference that pushes 
it in a specific direction. Therefore, we cannot determine the trajectory in the state space in 
advance. This means that we lose information about the system: if we initially knew the state 
of the system, then  we no longer know it after unknown influences have changed that state.  
 

• Example:	  a	  bottle	  thrown	  into	  the	  sea	  

The bottle is subjected to the waves, currents, wind, etc. The longer the bottle is adrift, the 
further it will in general be removed from the place where we threw it into the sea. We 
however do not know in which direction the bottle will move, or where it will end up. The 

longer we wait, the larger our uncertainty about 
the location of the bottle becomes.  
 

• Example:	  Brownian	  movement	  

A miniscule dust particle in a stationary fluid 
will still move in an unpredictable manner. This 
can be seen under a microscope. The explanation 
is that fluid molecules collide with the particle 
from random directions. Every collision causes 
the particle to move a bit.  
 
This type of movement is also called a random 
walk. It can be compared with the trajectory of a 
drunk who staggers around without goal or 

direction. In the illustration to the left, you see a simulation of a random walk, from the 
starting point to the point where the simulation was finished. 
 

• Example:	  neutral	  evolution	  

A population of animals and plants can evolve even without natural selection. By accident, 
there will sometimes be more animals born with gene A than with gene B. If it happens that 
no animals with gene B are born, this gene will permanently disappear from the population. 
This is called genetic drift. In this way, a species can evolve independently of its 
environment.  
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If the genes also undergo accidental 
mutations that do not confer an 
advantage or disadvantage for 
survival, the process is called 
neutral evolution: the genetic 
makeup, and therefore the organisms 
themselves, change over time, but 
this evolution is not controlled by 
natural selection. This happens often 
with bacteria and viruses, which 
after all mutate easily.  
 
The effect can be visualised in a 
state space: a “wildtype” (initial 
state) that multiplies will produce 

descendants that are all slightly different from their ancestors, albeit in a random way. The 
more generations, the more mutations, and therefore in general the more differences. If we 
indicate these descendants with points in a state space, you will first see a concentrated 
“cluster” around the wildtype, which gradually fans out to a fuzzy “cloud” which covers an 
ever-larger region. Because it is difficult to draw dividing lines or boundaries that distinguish 
the one kind or variant from the other in such a cloud, such a distribution of related, but 
different types is called a quasi-species.  
 

10.3 The	  second	  law	  of	  thermodynamics	  

The previous observation about the spontaneous decrease of information under the influence 
of random variations can be explicitly formulated as a law: 
 

In a system without selection, entropy can only increase or remain the same, but 
never decrease. 
 

Entropy or uncertainty aims in a certain sense to reach a maximal value. Only when it has 
attained this maximum will evolution stop and will the system reach equilibrium. This means 
that such evolution is irreversible: entropy can never decrease again to its original value. 
This is an alternative formulation of the famous second law of thermodynamics. Let me 
illustrate this law with a classical example.  
 

• Example:	  the	  box	  with	  two	  compartments	  

Consider an airtight box with two compartments that are separated by a wall. In the left 
compartment there is a gas—i.e. a collection of molecules that move in different directions. 
The compartment on the right is initially empty. Now imagine that an opening is made in the 
dividing wall. What happens? The gas spontaneously flows into the empty compartment, 
until both compartments are homogenously filled. After that, nothing changes anymore: the 
system has reached equilibrium.  
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Entropy has clearly increased. First, we were certain that an arbitrary gas molecule would be 
found in the left compartment: P(left) = 1, P(right) = 0. Afterwards, we have a fifty-fifty 
chance to find the gas molecule either left or right: P(left) = P(right) = 0.50. Our uncertainty 
about the location has therefore increased, while the constraint on the molecules has 
decreased: they are no longer restricted to the left compartment.  
 

 
 
Explanation: A molecule in the left compartment that moves to the right, at the level of the 
hole, will end up in the right compartment. A molecule on the right compartment that moves 
to the left, at the level of the hole, will end up in the left compartment. The probability of this 
happening is the same for the left and for the right. Initially there are however many more 
molecules on the left side, and therefore many more molecules that will fly through the hole 
to the right. Thus, on average more molecules will move from left to right than vice versa. 
This is why the number of molecules on the right will increase. However, when both 
compartments have become equally full, the average number of molecules that move left → 
right and right → left will be equal. That is why the number of molecules left or right now 
remains the same.  
 
This same mechanism takes place in all systems whose components are not distributed 
homogenously and which are subject to random movements or fluctuations. A larger number 
of components will leave the more populated regions to end up in the less populated regions, 
than vice versa. The inhomogeneity, and the accompanying structure, organisation or 
differentiation, will therefore spontaneously disappear or be erased. 
 

• Examples:	  

• A drop of blue ink in a glass of water spreads until the fluid gets a uniform light blue 
colour. 

• An ice cube in a glass of water melts, and warm and cold water mix until everything 
has the same temperature. 
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A sand castle will gradually fall apart 
under the influence of the weather 
until the beach is more or less smooth 
again. Note that the level of the sand 
in the horizontal position s is 
proportional to the probability P(s) to 
find a grain of sand in that position: 
the higher the heap of sand, the more 
grains of sand, and therefore the 
larger the probability. The 
distribution of the grains of sand is 
therefore analogous to a probability 
distribution. The erosion and collapse 
of the sand castle thus corresponds to 
the evolution of the probability 
distribution from one with low 
entropy (i.e. peaks and valleys) to one 
with high entropy (i.e. flat). This 
becomes clear if you compare the 
picture on the left, which shows 
consecutive stages  (t = 1, 2, 3, 4) of 
erosion of a sand castle, with the 
pictures of entropy distributions in 
section 8.4. The horizontal line here 
represents the equilibrium 

distribution, where all probabilities are the same.  

 
 

• Interpretation:	  

In systems that are left to their own devices, disorder tends to increase. All complex systems 
are subject to wear and tear, that is, to the gradual loss of structure. Examples are the 
accumulation of dust and dirt, erosion and decay, rust, forgetting (the spontaneous fading of 
information in memory), deterioration and aging ending in death.  
 
Applied to the universe as a whole, this idea appears to imply that all organisation or 
structure will eventually disappear. This vision is called the heat death of the universe, 
because in thermodynamics increase of entropy is accompanied by dissipation of energy in 
the form of heat. In the clockwork metaphor (section 1.3), the heat death is the situation in 
which the battery of the clockwork has run out, and there is no longer any usable energy 
available to allow the clockwork (the universe) to continue functioning. Everything has 
become uniform, grey, homogenous: there is no longer any form, change or structure; every 
complexity or differentiation is lost.  
 
If you consider this interpretation as an absolute natural law, then there is no room for self-
organisation, life, or progress. This produces a pessimistic and fatalistic worldview. The only 
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remaining explanations for the life or the organisation that we see around us are then the 
following:  

a) the result of an extremely unlikely accident (cf. the approach of the biologist J. 
Monod in his classic book Le hasard et la nécessité) 

b) the creation by some supernatural force that is able to counteract the natural increase 
of entropy (e.g. the “élan vital” or life force postulated by philosopher H. Bergson) 

 
In this book, we will defend a more realistic interpretation of the second law of 
thermodynamics: the increase of entropy through random variation is only one side of the 
coin. There is a complementary mechanism, namely selection, that has the opposite effect.  
 
We do have to make an important observation. The traditional formulation of the second law 
states that entropy cannot decrease in a closed system. “Closed” here means that there is no 
exchange with the environment. This law is in general valid for thermodynamic entropy 
(dissipation of heat). We will now show, however, that it is not necessarily valid for 
statistical entropy (uncertainty). The required condition for increase of statistical entropy is 
not that there is no exchange with the environment, but that there is no selection. 
 

10.4 Selection	  through	  asymmetrical	  preference	  

• Maxwell’s	  demon	  

Consider again the box with two compartments, 
with an opening in the dividing wall. Both 
compartments contain the same amount of gas. Now 
imagine that there is a door across the opening. The 
19th century physicist Maxwell wondered what 
would happen if there were a small demon at that 
door who would only open the door for molecules 
that were coming from the right. Thus:  

• Movement left → right: door closed. The 
molecule remains on the left. 

• Movement right → left: door open. The 
molecule leaves the compartment on the 
right and enters the one on the left.  

 
Result: the right compartment empties itself into the 

left, and entropy decreases.  
 
This contradicts the statistical interpretation of the second law of thermodynamics. Many 
scientists have therefore argued that such a demon cannot exist. We can however replace the 
demon with a simple mechanism: a spring that allows the door to open if the molecule 
collides with it from the right, but that otherwise pulls the door shut (see illustration below).  
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In both cases, demon or spring, the principle is the same: to decrease entropy, it suffices to 
apply a preference or asymmetry to the movements: right → left is preferred over, or is easier 
than, left → right.  
 
Note: this thought experiment does not contradict the second law of thermodynamics in its 
original meaning. The thermodynamic entropy does increase: heat is dissipated, since the 
collisions of the molecules against the walls and the door release heat. However, the 
statistical entropy (uncertainty) concerning the positions of the molecules decreases. 
 

• Example:	  the	  magical	  carpet	  

This is a simple experiment that you can do yourself. Place different small, heavy objects 
(coins, bolts, pebbles, ...) on a loose piece of carpet. Move the carpet back and forth in both 
directions. Despite the random movements of the carpet, the objects appear to have a 
preference to move in a specific direction (for example to the right, depending on the carpet). 
If you keep up the back-and-forth movement long enough, they will eventually all fall off the 
same right end of the carpet. 
 
The reason is that the hairs of the carpet point in a certain direction (in this case to the left), 
and thus impede movements in the opposite direction. On average, an arbitrary movement 
(“random walk”, drift) will therefore be turned into a goal-directed movement. All objects are 
dragged by this movement to the endpoint, where they heap up. Again there is decrease of 
entropy: dispersed systems become concentrated in a small part of the state space.  
 

A B C D  
 
This principle can be easily explained with the picture above. When the jagged surface is 
shaken randomly (movements in both directions are equally probable), the ball will still only 
move in the direction of the arrow: A → B → C → ... The reason is that a movement from 
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right to left is blocked by the steep cliff, while a movement from left to right goes smoothly 
over the gentle slope.  
 

 
 
Another example is an ear of corn (depicted schematically above). This easily enters clothes 
(such as a woollen jumper) with its sharp point. Once it is in the clothes, however, it is very 
difficult to pull the ear out again, since it has barbs. The only way to get rid of this awkward 
thing without damaging the jumper is by pulling it further in until it has passed through the 
fabric. Various seeds use the same mechanism, using barbs to stick to clothes or animal fur, 
and thus profit from the movements of the animal to reach new grounds to germinate.  
 

• Asymmetrical	  evolution	  

These examples illustrate a general principle of evolution: the transition from a state a to a 
state b is in general not as likely or easy as the transition from b to a. Transitions are usually 
asymmetrical: a → b and b → a are not equivalent. One of the two is in general preferable.  
 
In this case, we can speak of selection: there is a preference for a certain direction and 
therefore for one of the two states. Imagine that a → b is easier than vice versa, then most 
systems will leave a and end up in b. If there is no other state c, for which the preference 
would be b → c rather than c → b, then the systems will accumulate in b. State b functions as 
an attractor, a region in the state space that “attracts” the system.  
 

• The	  ratchet	  effect	  

Certain movements are only possible in one 
direction. For example, pedalling can make a 
bike only go forwards, not backwards. The 
mechanism that enables such a unilateral 
movement is called a ratchet. A ratchet is 
simply a round cog (b in the illustration) of 
which the teeth are asymmetrical as in the 
previous illustration. When a catch (a) is 
pushed against the steep side of the tooth with 

a spring, this will prevent all movement of the ratchet towards the catch (clockwise in the 
illustration), while allowing movement away from the catch (counter clockwise). 
 
Random variation in such a situation will be blocked in the one direction, and facilitated in 
the other direction. The result is that random variation is converted into goal-directed, 
irreversible change. This propels evolution in a specific direction: “progress”, without the 
possibility to move backwards again. This irreversibility of evolution due to asymmetrical 
preferences is called the ratchet effect. (Whether the direction “forwards” will also be the 
direction of “improvement” will be studied later.) 
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• Conclusion	  

With random, unknown disturbances, all possible movements in the state space have the 
same probability. This leads to a diffusion from a small part of the state space to a larger part, 
and thus to the increase of entropy. However, in many cases, the probability of movement is 
not uniform. Movements in one direction are easier than in another direction: there is a 
selective preference. In that case, systems will accumulate in the region of the state space that 
is easiest to enter (and hardest to get out of). Entropy can therefore either decrease or 
increase, depending on the presence of selection.  
 

10.5 Order	  out	  of	  chaos	  

Random variation produces entropy or disorder. Selection produces information or order. 
Together they produce more order. Indeed, selection blocks variations in the “wrong” 
direction, but allows variations in the “right” direction. Increase of random variation thus 
leads to: 

1. more disorder when there is no selection 

2. more order when there is selection 
 
In other words, if there is a selective preference for certain configurations, more uncontrolled 
variation (chaos, noise, disturbances, fluctuations) will lead to more order. This seems 
paradoxical. Yet, it is a very fundamental principle with wide applicability, especially to all 
forms of self-organisation. This principle has been suggested by different scientists under 
different names, such as:  

• order from noise (von Foerster) 

• order through fluctuations (Prigogine) 
 

• Example:	  shaking	  causes	  volume	  reduction	  

Shake a jar that you have filled with many small chunks or pieces, such as tealeaves, nails, 
grains of sand, or salt. The more you shake, the lower the level of the material comes to be. 
The jar, which initially seemed full, now appears to have quite some space left that can be 
filled up. The selective preference is as follows: when the jar is shaken, chunks that are closer 
to the bottom and closer together will have a harder time coming back up than chunks that 
are assembled more loosely. This is why all pieces “aim” for an as tight a concentration as 
possible, on the bottom. Shaking more (more variation) leads to a smaller volume (more 
order).  
 
When the pieces have all exactly the same shape and size, the most compact configuration 
normally is the one where the pieces lie at exactly the same distance from each other, like in 
a crystal. Indeed, imagine that pieces a and b are at a shorter distance from each other than c 
and d. This implies that the distance between c and d is not minimal, because what a and b 
can do, c and d can in principle do as well. The optimal configuration therefore is the one in 
which no relationship between two pieces is different from any other relationship. This 
principle has been illustrated below. On the left you see an unordered heap of square blocks 
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in a rectangular box. On the right, you see the same blocks, but now regularly aligned, with 
minimal spacing. It is clear that the blocks in the right box take up much less space. In the 
case of identical components, such as atoms and molecules, the selected configuration is thus 
very clearly ordered, in the sense of symmetrical or regular. 

 

• Application:	  the	  hardening	  of	  metal 

To make metal as hard as possible, one should obtain a crystal structure that is as regular as 
possible for the metal molecules. Indeed, a deviation from this order would imply that some 
molecules are farther away from each other than others. That means that they can move more 
easily relative to each other when the metal is put under stress. Such irregularities form the 
weak spots, where the metal will break first. Armourers, who aimed to make swords that 
were maximally resistant to violent use, learned through trial-and-error how to achieve a 
maximal hardness. The technique consists of heating the metal several times, each time 
letting it cool  down slowly. High temperatures make the molecules move more forcefully 
relative to each other, and thus lead to variation. This variation breaks weak connections and 
gives the molecules the chance to discover a more stable configuration. During the cooling 
down, the variation gradually decreases, so that the metal can settle in the most regular, and 
thus the most stable, structure.  
 

• Experiment:	  self-‐organisation	  of	  paperclips	  

Fill a box with paperclips that are opened slightly, so that they can 
slide into each other. Now shake the box. Result: the paperclips 
self-organise into forked chains. Explanation: it is easier for two 
loose paperclips to slide into each other, and thus get connected, 
than to get disconnected again. The selection principle is therefore: 
paperclips that are slid into each other are “preferred”. The harder 
and longer you shake the box (more variation), the more paperclips 
will be hanging together in the end. 
 

• Blind	  variation	  

In the theory of evolution, we often speak of “blind” or “random” 
variation. Mutations in genes are in general purely accidental and unpredictable. The essence 
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of the Darwinian theory of evolution is that this suffices for evolution, on the condition that 
there is also selection. This means that the variations do not need to be directed to still 
produce directed evolution. The variations do not have “foreknowledge” about the right 
direction of evolution; they cannot “foresee” their further trajectory; they are “blind”. The 
examples that we have discussed show that we indeed do not need anything else for directed 
evolution. 
 
However, this does not rule out that variations can be directed, as is the case in many 
situations. The fundamental insight is however that evolution would work even if variations 
were 100% blind. This allows us to explain organisation without needing to appeal to any 
existing order or intelligence (“God”) that directs the process. (We still need to explain where 
exactly this selective pressure comes from, which we will do by introducing the concept of 
“fitness”.) 
 
Another way to formulate “blindness” is that variation does not “know” what selection’s 
preference is: variation and selection mechanisms are in general independent of each other. 
For example, mutations in DNA are independent of the environment that the organism is 
trying to adapt to. The movements of the carpet for instance are independent of the direction 
of the hairs on the carpet.  
 

• Evolution	  as	  problem	  solving	  

A universal method to solve problems is the following: try something (trial) and if it does not 
work (error), try something else, until you eventually reach your goal. This is the method that 
evolution uses to search for “preferred” systems.  
 
If you have solved similar problems before, you will however in general not try something 
purely at random, but start with things that you know, from experience, to have a larger 
chance of success. In this case, your search is not really “blind”, but on the other hand, you 
do not know exactly how to reach your goal either. This is called heuristic problem solving: 
although there is no guarantee of success, you do have a more or less efficient method or 
intuition that allows you to reach your goal a bit faster. As we will see below, many systems 
have in the course of evolution developed forms of such “heuristic” knowledge, so they no 
longer need to grope around blindly. However, they still do not have a clear vision for the 
future. In this case, the general idea of (non-blind) variation and selection remains useable to 
describe the process, rather than a vision based on predestination or determinism.  
 

10.6 The	  stepping	  stone	  principle	  

We have seen that more variation increases the chances of finding a solution to a problem. 
However, this is of little help if the chance of success is a priori immeasurably small. Typical 
organisms are after all immensely complex systems that can only survive in very specific 
circumstances. “Very complex” means many components and properties and therefore a very 
large state space. “Very specific circumstances” means that only a very small part of the state 
space is viable. The percentage of viable states is therefore infinitesimally small. The 
question that now arises is: how has blind variation managed to discover exactly these 
specific states?  
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• Example:	  evolving	  a	  very	  simple	  organism	  

Consider an imaginary organism with a DNA chain that is 1000 “words” long. (This is in fact 
a lot simpler than even the simplest organisms we know.) Every “word” represents one 
amino acid (the building blocks of the proteins that make up the cell). There are 20 amino 
acids that are used by life on earth. These form the “vocabulary” of the genes. The state space 
for this system consists of all possible “sentences” with a length of 1000 words that can be 
made, where each word is chosen among the 20 possibilities. The number of possible states is 
then 201000 or about 101301 (1 followed by 1301 zeroes)! 
 
Imagine that only one state is the right one. How long will it take before you can find that 
state through variation and selection? Assume that you would make one guess every second, 
and that you would start guessing at the beginning of the universe (about 10 billion years 
ago), then you would have had less than 1017 chances to find the right sentence, which is only 
a minimal fraction of what you need. Guessing faster (for example a thousand times per 
second) does not make it less hopeless. Conclusion: no matter how much variation there is, 
you will never find the correct solution by only guessing blindly.  
 

• Example:	  Hoyle’s	  Boeing	  

Imagine a tornado passing through a junkyard. How big is the probability that blind variation 
will assemble various pieces of scrap metal and plastic in the shape of a Boeing 747? Again 
the probability is virtually zero, independent of the duration or the power of the tornado.  
 
Such examples are typically used by people who are sceptical about Darwin’s theory of 
evolution. (This example comes from astrophysicist Fred Hoyle, who believed that life could 
not have arisen on earth, but needs to have an extraterrestrial origin.) According to them, the 
chances of assembling a living being through blind variation is so small that we have to 
postulate another type of mechanism to explain life, such as an intervention by God, by 
extraterrestrials, or by a kind of power (self-organisation, élan vital, ...) that was not foreseen 
by Darwin. The divine explanation has two versions:  

1. Creationism: God has directly created all living beings, as described in the Bible. 
Problem: how do you explain fossils of primitive animals? And who created God? 

2. “Intelligent design”: an unspecified intelligence has now and then intervened in 
evolution in order to steer it in the right direction. This is more difficult to refute, but 
still does not give a real explanation: where does this intelligence come from? How 
does it work? Why is it intervening?... 

 
The following stepping stone principle however gives a much simpler explanation. 
 

• Example:	  the	  parable	  of	  the	  safecracker	  

The following example was proposed by H.A. Simon. Imagine a safe with a combination 
lock consisting of six digits. To open it, you need to find the correct combination of digits. 
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Six digits with each ten possible values gives 106 = 1 million possible states. This is much 
smaller than the state space of an organism, but in practice still far too large to find the 
solution by guessing.  
 
How can a safecracker open the lock? Each of the cogs of the combination lock has 10 
positions. One of these positions, the right one, has been used often and is lightly worn. 
When the cog goes through that position, you hear a light “click” (this is the reason that 
safecrackers listen carefully with a stethoscope). You now know that this cog is in the correct 
position, and that you can move on to the next one. After maximum 6 × 10 trials all cogs are 
in the right position.  
 
Instead of having to try 1,000,000 times, you got there with not more than 60 trials! The 
crucial step is hearing the “click”. This indicates that you are on the right path and that you 
can now turn your attention to the next cog. You no longer have to try all possible 
combinations, because you can leave the cogs that you have already tested in place.  
 
In essence: the “click”, that is, the information that you are on the right path, that you have a 
part of the solution, reduces the number of possibilities to try from a multiplication (10 × 10 
× 10 × ...) to a summation (10 + 10 + 10 +...). The number of possibilities no longer increases 
exponentially, but linearly.  
 
Example: now let us apply the same assumption to the imaginary organism from the previous 
example: 20 + 20 + 20 ... = 20 × 1000 = 20,000, instead of 201000. With 20,000 tries you are 
certain to find the solution. For evolution, this is trivial. There have after all been billions of 
organisms over billions of years to try the different possibilities.  
 
Now consider a more realistic organism with 1 million words in its DNA. Then we need 20 × 
1 million = 20 million tries. This is still very little by evolutionary standards.  
 
In practice we of course do not get a “click” with every word that we guessed correctly. 
However what we do find are partial solutions: “intermediate steps” to the more remote goal.  
 

• The	  metaphor	  of	  the	  river	  

Imagine that a river is 6 meter wide—which means that it is too wide to cross without getting 
wet. Now imagine that about every meter, there is a big boulder sticking out of the water. 
You can then step from stone to stone until you have crossed the river. This is how partial 
solutions function as “stepping stones” towards the final solution and make a seemingly 
unsolvable problem almost trivial. (Note that there is no such thing as a “complete” or final 
solution in evolution: there are only partial solutions, and everything can always be 
improved.) 
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In the illustration above, a state space has been represented two dimensionally. White 
surfaces (“stones”) represent states that are viable or fit; grey surfaces (“water”) represent 
states that are not fit, and where the system would be eliminated. Variations can jump over 
grey surfaces on the condition that the jump is not too long. It suffices that there are enough 
white surfaces (“stepping stones), that are not too far from each other, to allow evolution to 
cross the large grey zone (“river” via some small jumps (the arrows in the illustration). 
 
Example*: the evolution of the eye in six “steps” 
 
The complex organisation of the eye is another example that critics of the theory of evolution 
like to use. If you blindly throw together some components, chances that you will get a 
working eye are tiny. Neither are there, at first sight, partial solutions: what can you do with a 
quarter or a half eye? Yet it is actually rather simple to imagine a sequence of intermediate 
steps in the evolution of the eye: 
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1. A part of the skin becomes light sensitive: the animal can now distinguish day from 
night. 

2. The light-sensitive part gradually sinks away into a cup that forms a simple “pinhole 
camera”, so that the light through the opening (“pupil”) is projected onto the light-
sensitive part (“retina”) and thus forms a blurry image. The animal can now 
distinguish from which direction the light is coming. 

3. Transparent skin grows over the cup and closes it; the light-sensitive tissue is now 
protected against dust, heat and cold.  

4. The transparent skin thickens in the centre: this forms a simple lens that focuses the 
light, so that the image becomes sharper. 

5. Muscles pull the lens to make it thicker or thinner: the eye can now focus on both 
nearby and far-away objects. 

6. The light-sensitive cells mutate into different types, sensitive for blue, green and red 
light, respectively: the eye can now distinguish colours. 

 
Each of these steps is a clear improvement over the previous step, and will thus be selected 
for. This evolutionary sequence seems realistic, since there exist animals exhibiting each of 
these stages of development. 
 

10.7 Exaptation	  and	  the	  paradox	  of	  irreducible	  complexity	  

Despite all of these arguments in favour of evolution, the opponents of the theory of 
evolution have not surrendered yet, and they continue searching for some or other form of 
higher intelligence that directs evolution. Thus far, the most sophisticated argument from the 
“intelligent design” camp has been articulated by biochemist Michael Behe. He defines a 
system as “irreducibly complex” if leaving out only a single component means that the 
system no longer functions. This implies that the function of the system emerges from the 
whole of all of its components, and thus cannot be reduced to a combination of the functions 
of the individual parts. Besides a couple of complicated examples of biochemical reactions in 
living organisms, Behe illustrates this with the example of a mousetrap. An even simpler 
example of an “irreducibly complex system” is a table. A table consists of a tabletop that is 
supported by at least three legs. This clearly would be completely useless if one of these 
basic components would disappear: no table can remain standing with only two legs, while 
any combination of legs without tabletop cannot support anything.  
 
According to the stepping stone principle, a complex system will evolve via a number of 
intermediary steps. Behe assumes that each step produces one component of the system, 
since it is unlikely that blind variation would create more than one component at a time. With 
an irreducibly complex system, however, all components must be present together for the 
system to function. The intermediary steps therefore provide no benefit whatsoever: they 
only produce components that are as yet still useless. Natural selection will therefore not 
retain them. According to Behe, natural selection in this case can only work if all components 
would all at once end up in their right place. As illustrated by Hoyle’s Boeing, the probability 
that this would happen through blind variation is vanishingly small. Therefore we have to 
assume an intelligent force that has brought the components together in the correct way.  
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The mistake Behe makes in this reasoning is to assume that the function of a component as 
we know it now would also have been its function when it first appeared. This would imply 
that evolution works in a directed manner and adds the components one by one with a view 
to their future function—just like a carpenter screws a leg to a board with the intention that 
this, after adding another three legs, would eventually form a table. When there is only one 
leg, it cannot fulfil its function of supporting the tabletop, since at least three legs are required 
to form a stable whole. Variation is however a “random walk”, now going in one direction, 
then in another, pausing only when it meets a stable, “fit” configuration. Therefore, in general 
these intermediary steps form anything but a straight line from start to finish.  
 
In many cases, the intermediary steps will be fit because they fill a completely different 
function than the one performed by the system where the process finally ends up. While 
evolution proceeds, components formed thus will regularly change function, if it turns out 
that they also have another use. This is called exaptation: a component that was originally 
adapted to fulfil a certain function (adaptation), later appears to be useful to fulfil a 
completely different function—making the original function secondary or maybe even 
useless. Evolution is opportunistic: it uses the possibilities that present themselves at that 
moment, without looking ahead or planning, or trying to find the shortest way to a distant 
goal. Let me illustrate this with some examples. 
 

• Examples:	  swim	  bladders	  and	  feathers	  

The swim bladder that allows fish to regulate their vertical position under water was 
originally a primitive lung that allowed lungfish to gasp for air above the surface when there 
was not enough oxygen in the water. Most modern fish live in well-oxygenated water and 
therefore no longer need to breathe air. Their lung function has disappeared. However, their 
descent from lungfish has given them a clear advantage compared to more primitive fish, 
such as sharks and rays, which do not have a swim bladder and therefore have to keep 
moving to prevent sinking to the bottom.  
 
We find a similar form of exaptation in what appears at first to be an example of irreducible 
complexity: birds’ feathers. Birds can fly thanks to the remarkable structure of their feathers, 
which allow air to pass through when the wing moves upwards during a wing beat, but not 
when it moves downwards. It is generally accepted that birds have evolved from small 
dinosaurs that had neither wings nor feathers. To learn to fly like birds, these dinosaurs 
needed to develop both wings and feathers, since either component alone does not suffice. 
(Note that there were flying reptiles without feathers, but these flew in a completely different 
way—or rather they glided.) We can however solve this problem quite simply by noting that 
feathers have another function besides flying: they are highly suitable to maintain body heat, 
as anyone who has slept under an eiderdown duvet can attest. It is therefore likely that 
feathers first arose as protection against the cold, and only much later, after the ancestors of 
birds had learned to glide from tree to tree and thus had developed wing-like limbs, acquired 
their specific flight function.  



102 
 

 

• The	  importance	  of	  detours	  

These examples are very simple, because they do not comprise more than two components or 
functions, but the same reasoning applies to more complex systems with dozens of 
components. The examples of “irreducible complexity” that Behe put forward in his book 
have all been refuted using evolutionary “roadmaps” that use exaptation.  
 
We need to add that evolution does not always make a system more complex, but sometimes 
streamlines and simplifies a complicated design, because this makes it more efficient to build 
and use. Imagine that a complicated series of intermediary steps leads to the evolution of a 
system with 20 components, which each offered a useful contribution at a certain point in 
time. Now that these components are working together perfectly for their collective function, 
it turns out that this function can also be performed with less elements. Selection for greater 
efficiency will in general lead to the gradual disappearance of components that are no longer 
useful, until each remaining component is absolutely necessary.  A follower of Behe might 
conclude that the system shows irreducible complexity, and then decide that it could not have 
developed via intermediary steps. 
 
This is understandable if you reason like an engineer or designer who has a clear goal in 
mind, and tries to conceive the shortest or most logical way to that goal. But what we, with 
hindsight, would consider the most logical way, is independent of the path evolution actually 
followed. The state space for a complex evolving system is so immense that we cannot 
imagine even a fraction of the possible trajectories that lead from state A to state B.  Our 
natural tendency is to consider only the shortest or most direct paths. If we do not find 
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enough stepping stones on this path, we will tend to conclude that evolution would never 
have been able to bridge the distance on its own. However, blind variation is not subject to 
these biases and will therefore not hesitate to follow the most complicated twists and turns, 
exploring half a dozen eventually unnecessary functions on the way, to eventually end up in 
B, albeit from a completely different direction than we would have expected.  
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Chapter	  11. Fitness	  

11.1 Recapitulation:	  variation	  and	  selection	  

Variation is the exploration of new states, without bias or direction. Because of variation, the 
possible trajectories through the state space will diverge or fan out, resulting in a growing 
variety of possible states (distinction creation). As a result, variation increases variety or 
entropy, and decreases the information we have about the system.  
 
Variation does not need to be explained. We can see it as a consequence of random, 
uncoordinated influences or disturbances. As long as the universe is not completely rigid or 
frozen, there are always sources of variation. Every system of which the temperature is above 
absolute zero (–273ºC), undergoes thermal fluctuations (small, random movements of 
molecules). According to quantum mechanics, even the vacuum (which is by definition at 
absolute zero) will undergo quantum fluctuations. Chaos theory adds that such microscopic 
fluctuations can produce macroscopic effects (the butterfly effect). Since a system interacts 
by definition with the rest of the universe, it will necessarily undergo the influence of such 
accidental changes, and therefore spontaneously change state.  
 
Nevertheless, to get a constructive evolution, variation has to be complemented by selection. 
Selection is the preferential retainment of certain states or variations, and the elimination of 
others. In this way, selection is the direct counterpart of variation. It reduces the number of 
states and therefore the variety or entropy. Selection is that which prevents a diffuse “cloud” 
of states from diverging too much, or makes it converge to a particular region of the state 
space, i.e. an attractor. Accordingly, selection reduces our uncertainty and increases 
information.  
 
But what exactly is being selected? The question is why certain states are preferred above 
others. Where lies the difference? Which are the “forces” or the dynamics that propel the 
system in a certain direction? The answer is fitness: states with a higher fitness are preferred. 
The problem now is that we need to understand exactly what fitness is, where it comes from, 
and how it directs the evolutionary process.  
 

11.2 The	  tautology	  of	  natural	  selection	  

Natural selection can be defined as the “survival of the fittest”: the fittest are retained, the 
less fit are eliminated. This formulation can however be seen as a tautology, that is, a 
statement that is necessarily, by definition, true. Indeed the most general definition of “fit” is 
“that which is able to survive”. (The more traditional interpretation of “survival of the fittest” 
as “survival of the strongest” is incorrect, because “strength” has little to do with 
evolutionary success.) According to this interpretation, natural selection means nothing more 
than what is good at surviving, survives.  
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Such a statement appears trivial or meaningless, and various thinkers have rejected natural 
selection as a general explanatory model for that reason. The interpretation of natural 
selection as a tautology is not strictly speaking incorrect, but the conclusion that the principle 
of natural selection is therefore useless, misses the point. After all, the laws of logic and 
mathematics are all tautologies. That does not mean that logic and mathematics are trivial or 
meaningless: the propositions that can be proven on the basis of these axioms are often very 
complex and counterintuitive, and their applications for calculations or deductions are legion. 
 
Examples: 

• If A is true, and if A implies B, then B is true. This is the most fundamental inference 
rule in logic, the so-called modus ponendo ponens. The rule appears self-evident, 
since implication is defined by the property that you can deduce the truth of the 
second clause (B) from the truth of the first (A). The modus ponendo ponens is still a 
useful and fundamental rule, which allows both students and computer programs to 
make the correct inferences. 

• The axiom of contradiction: A & not A = false. 

• The foundation of addition: 1 + 1 = 2. 
 
The use of such implications or equalities that are at first sight trivial is the connection 
between two different representations, viewpoints or aspects of the same phenomenon (for 
example 1 + 1 and 2). If you know the one representation, then you can deduce the other. 
Changing the representation often allows you to infer non-trivial predictions or insights.  
 
We can apply the same reasoning to natural selection: that which is selected and that which is 
fit are two perspectives on the same phenomenon. “Fit” considers the properties of the 
system in relation to its environment. “Selection” considers what happens with the system in 
the long run. The rule “that which is fit will be selected” (and vice versa) helps us to make 
the correct deductions, and to come to conclusions that are in general not at all self-evident. 
In the example of the giraffes and their long neck, we will immediately start to imagine their 
specific environment, a savannah with tall trees, when asked “what is it that makes a giraffe 
fit?” From the general knowledge that an animal needs to find enough food to eat in order to 
survive, we can then deduce that fitness in this specific case requires a long neck. Thus, the 
principle of natural selection is in the first place a heuristic, meaning a rule of thought that 
allows us to divide complex problems into more comprehensible subproblems. 
 
The advantage of a tautology is that such a statement does not have to be justified: it is by 
definition true. If you have reduced a phenomenon to natural selection, then you have in a 
sense completely explained it. On the other hand, when you reduce a phenomenon to the laws 
of nature or to the will of God, then you will still need to explain why God would have 
wanted this, or why the natural laws are like this.  
 

11.3 Definition	  of	  fitness	  

The intuition that we want to express is as follows: fit systems or states become more 
numerous; unfit systems become less numerous and eventually disappear. We can quantify 
this as follows: 
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F(s) = N(s, t+1) / N(s, t) 
  
 
This means that the fitness F of the state / system s is equal to the number of appearances N 
of s at time t + 1 (future generation), divided by the number N at time t (current generation). 
This is the definition used in genetics. We can now distinguish the following special cases: 

• F(s) = 1 means that the number of appearances of N remains constant. 

• F > 1 means that the number increases. 

• F < 1 means that the number decreases, and that the systems of type s will eventually 
die out. 

 
There are different mechanisms that determine whether the number of “appearances” 
increases or decreases:  

• Survival: if not all appearances survive, the number decreases, which leads to a low 
fitness. 

• Reproduction: if each system produces a lot of offspring, the number increases, 
which leads to high fitness. 

• “Spontaneous generation”: if the systems of a certain type arise spontaneously (i.e. 
not through reproduction of an existing system), the number increases, which leads to 
high fitness. 

 
Living organisms do not arise spontaneously, but certain physical systems (e.g. molecules, 
snowflakes, crystals etc.) do. Some of these (such as autocatalytic molecules, see 14.5, or 
crystals) can either increase through reproduction of the base form (for example a salt crystal 
that is dropped in a saturated saline solution) or through spontaneous generation (even 
without the added crystal, salt crystals will eventually form in the solution). Here we have to 
note that since most applications of fitness and evolution come from biology, spontaneous 
generation is usually overlooked as a fitness mechanism. 
 
To conclude: fit appearances do not die off too quickly, and are either reproduced quickly 
enough or arise spontaneously. 
 
There are different “strategies” to obtain high fitness, however, depending on which of the 
three mechanisms (survival, reproduction, spontaneous generation) plays a more or less 
important roles. Indeed, it is in general not possible for a system to excel in all three 
properties. For example, systems such as organisms are too complex to be generated 
spontaneously, through self-organisation. Because of their complex organisation, they can 
however maintain a subsystem that is specialised in efficient reproduction: the reproductive 
organs. We will now generalise this idea of different strategies. 
 

11.4 Fitness	  dimensions	  

Since every system and every environment are unique, fitness has in principle an infinite 
number of different aspects or dimensions. The properties that increase fitness for one type of 
system (e.g. a long neck for giraffes) are in general irrelevant for another type (e.g. viruses), 
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where completely different properties are crucial (e.g. the ability to avoid the immune system 
of the host). Yet with our abstract definition of fitness, we can still distinguish certain 
universal “dimensions” according to which fitness can vary.  
 

• r-‐K	  selection	  

Two general strategies to obtain fitness can be distinguished for organisms. (The labels r and 
K come from a classic mathematical model of population growth.) 
 
r-selection is characterised by fast reproduction and growth, but a short lifetime. Examples of 
organisms that follow this strategy are bacteria, insects, mice and weeds. These organisms are 
typically small, vulnerable and not very sophisticated. r-selection takes place in an 
environment where there is plenty of food to grow fast and reproduce fast, but where life is 
dangerous and unpredictable (for example because of predators, illnesses or strong 
fluctuations in the amount of available food), so that it is pointless to aim for the long term. 
Since survival of a certain individual will in general depend on uncontrollable, accidental 
factors, it is best to produce as many descendants as possible in the hope that at least one will 
survive. Natural selection here prefers quantity over quality: it is pointless to invest a lot of 
energy in individual descendants, by for example making them big and strong or by having 
them go through a long learning process, because the large risks in the environment mean 
that there is no guarantee that these extra trumps will improve the chances of survival.  
 
K-selection is the other extreme of the continuum reproduction ↔ survival. This strategy 
aims for a long lifespan, but the downside is slow reproduction and growth. Examples are 
humans, tortoises, elephants, oaks and other trees with hard, durable wood. Such organisms 
are typically large, well protected and because of their long lives, they are able to gain a lot of 
experience. Their environment is relatively safe or stable, but because of mutual competition, 
the amount of food and resources is limited, so that there is no point in producing many 
descendants. Selection here prefers quality to quantity, and the parents invest a lot of energy 
to make their individual offspring as fit as possible so that they can handle the competition 
with others as well as possible. 
 
The differences between r- and K-selection are not only found between different species, but 
also within a species, when it is useful for an individual to choose the strategy that is best 
adapted to the individual situation. An example that I noticed while observing growth in my 
garden is the following. Some plants reproduce vegetatively through their rhizomes 
(networks of roots), which form long offshoots below ground, which then suddenly shoot up 
a meter or more away from the parent plant and form a new stem. I had noticed that these 
new stems appear much earlier in spring and grow much faster than the parent plant. At first 
sight, this is paradoxical, because you would expect that most of the food reserves are still in 
the old rhizome. According to r-K logic, on the other hand, this is an efficient strategy: the 
old rhizome is in a relatively safe, predictable environment, where the plant has after all 
already survived for years without problems. The new offshoots on the other hand are in 
unknown terrain, where there might be a shortage of light, food or water, and a danger of 
being pushed away or overshadowed by other plants. The offshoots therefore need to conquer 
the terrain as fast as possible, even if they have to run the risk of developing leaves early and 
in that way expose them to late frost (r-strategy). The parent plant on the other hand, has little 
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to fear from being pushed away and can therefore afford to grow more slowly (K-strategy). 
This reduces the risk of freezing and helps to form qualitatively strong stems and leaves.  
 
A more interesting (and more controversial) application of the r-K logic is human 
reproductive behaviour. It is an iron law of demography that the rich, developed countries 
have a smaller birth rate and death rate than poorer, developing countries. Moreover, both 
figures fall dramatically when the country develops—this is called the demographic 
transition. The lower death rate is easy to explain: in more developed countries, there is more 
investment in services such as food production, healthcare and safety, so that the risk of 
common causes of death such as famine, illness, accidents or war becomes a lot lower. The 
lower birth rate on the other hand is a lot less obvious. It is a paradox that exactly in the 
poorest countries, where there is hardly enough food to keep people alive, seven or eight 
children per woman are standard, while in countries where there are plenty of facilities to 
support child care, the birth rate is between 1 and 2 children per woman. Moreover, within 
those rich countries, it turns out to be the underprivileged or oppressed populations that have 
the most children. Examples are African Americans and Hispanics in the US, Islamic 
immigrants in Western Europe, the Roma in Eastern Europe, and the Palestinians in Israel. 
 
If we however assume that people in difficult circumstances (subconsciously) follow an r-
strategy, then it follows that exactly these populations would have the most children. Other 
typical properties of underprivileged and poor groups also follow the r-pattern: babies have a 
lower birth weight; women become pregnant at a younger age; adolescents and adults tend 
more towards risky behaviour such as smoking, drug use, unsafe sex, reckless driving, 
participation in crime or war..., in the hope of short-term advantages. However, they tend less 
towards long-term planning or investments, such as a studying for a university degree. 
Finally, their life expectancy is lower.  
 
Conversely, people who have grown up in a safe, reliable environment will subconsciously 
follow a K-strategy. This implies that they will bring few children into the world, but in the 
long term invest a lot in the health, wellbeing and upbringing of these rare descendants. 
Moreover, they strongly tend to avoid risks. 
 
The evolutionary anthropologist Chisholm has argued that these subconscious strategies are 
regulated by hormones: the unsafe environment in which underprivileged children grow up 
would lead to a higher production of the stress hormone cortisol. In turn, this would stimulate 
the production of the sex hormones estrogen and testosterone. These will then lead to the 
high fertility of women and the macho behaviour of young men that are typical for 
underprivileged populations.  
 

• The	  two	  aspects	  of	  fitness	  

The word “fit” in English has two meanings, each of which summarises a complementary 
aspect of the selection process:  

1. Adapted, fitting, suitable: in evolutionary terms, we can interpret this as the system 
fitting into its environment and making optimal use of it. It survives external 
selection, i.e. selection by the environment (see 12.4). This is the external or relative 
aspect of fitness. 
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2. Robust, healthy, in good condition: this means that the system is able to survive 
autonomously, independently of the environment. It survives internal selection (see 
12.4). This is the internal or absolute aspect of fitness. 

 

• External	  or	  relative	  fitness	  

Examples: a piece of a jigsaw “fits” in the right slot. Once in place, it is hard to get it out 
again. A key “fits” in its lock. The molecule of a medicine fits in the correct receptor in our 
body.  
 
This type of fitness is relative to the environment, and more specifically relative to the 
specific position that the system has within its environment, or the role that it fills in that 
environment. Such a situation within a larger environment to which the system can adapt is 
called a niche. A niche is a way of life that exploits specific resources available in the 
environment to survive. 
 
Example: Koalas only eat the leaves of the eucalypt tree. Without these trees, koalas would 
not survive. Other organisms, such as kangaroos, live in the same environment. They do not 
need eucalypt trees. Kangaroos fill a different niche than koalas.  
 
Example: Within our economy, there is a niche for companies that are specialised in 
repairing car exhausts. Without cars, these businesses would not survive.  
 
Aiming for relative fitness will in general lead to specialisation, so that the specific 
properties of the niche can be exploited as efficiently as possible. For example, car exhaust 
companies are more efficient in their specific niche than garages that repair cars in general.  
 

• Internal	  or	  absolute	  fitness	  

The second type of fitness is absolute, independent of the environment, or of the niche that 
the system occupies within it. One way to attain absolute fitness is intrinsic stability or 
rigidity. For example, a diamond is very hard and therefore almost indestructible, regardless 
of the environment. Another way is intrinsic flexibility or adaptivity. For example, rats, 
humans and cockroaches adapt to the most diverse environments. This kind of fitness favours 
the “generalists”, the jacks-of-all-trades. Generalists tend to do better in an environment that 
changes a lot, so that new adaptations are always necessary. Specialists tend to do better in an 
environment that is very stable, so that they can fully exploit it specific resources. 
 

11.5 The	  direction	  of	  evolution	  

Although evolution is in general unpredictable, it will by definition prefer systems with 
higher fitness. This is why in general the average fitness will increase. 
 
In the short term, in stable environments, this will lead to increased specialisation, and 
therefore to relative fitness. In the long term on the other hand, when the environment 
undergoes drastic changes (such as climate changes), the specialists are the first to die out, 



110 
 

because they are no longer adapted, and the generalists will take over. For example, imagine 
that because of new environmental laws only purely electric cars would be allowed. Then the 
niche for exhaust specialists disappears, while a niche remains for general car technicians. 
Such generalists will quickly produce diverse specialists, such as battery charging stations 
maintenance people, to fill all the niches of the new environment (this process of divergence 
is called adaptive radiation). Yet, there will remain generalists that maintain the essence of 
their adaptivity (see 14.1). In this way, their selection leads to increased absolute fitness.  
 
We still have to clarify how it is possible that evolution is intrinsically chaotic and 
unpredictable, but nevertheless that it has a preferred direction. This is best explained using 
an analogy. 
 

• The	  metaphor	  of	  the	  mountain	  

Let a ball go from the top of a steep, irregular mountain. The ball will roll down at high 
speed, crashing into rocks and other obstacles so that its trajectory is very unpredictable. You 
cannot tell where the ball will come to a halt. However, you do know almost certainly that 
the ball will stop at a position lower than the starting point. The direction of this evolution is 
unpredictable in the horizontal directions (east-west or north-south), but predictable in the 
vertical direction (down, not up).  
 
We will now expand this metaphor into a precise, mathematical model, where fitness plays 
the part of the vertical dimension. 
 

11.6 Fitness	  landscapes	  

Imagine the state space of a system as a two-dimensional, horizontal plane (in general a state 
space has many more dimensions, but this is hard to visualise). Suppose that for each state s 
we know the fitness value F(s). Now imagine F(s) in the vertical dimension, meaning that we 
are going to shift each point s vertically over a distance F(s). So, F(s) is the “elevation” of the 
point above (or below) the original plane. We have now transformed the state space into a 
fitness landscape. This means that instead of an even, uniform space, we now have an 
undulating landscape with hills and valleys. 
 
Convention: To stick with the mountain metaphor, we will see higher as less fit rather than as 
more fit. This is merely a convention, which has no effect on the effectiveness of the 
representation. Note that in biology and in the CAS approach the traditional convention is the 
other way around: here a “fitness peak” corresponds to high fitness. This convention is 
actually a little less intuitive for understanding evolution in a fitness landscape, because the 
system has to actively “climb” to the top, rather than spontaneously roll downhill. On the 
other hand, in physics (where they speak of a potential function rather than a fitness 
function), the same convention is used as in the mountain metaphor, meaning that the 
preferred direction for evolving systems is downhill.  
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In the illustration above, the state space is represented as one-dimensional (x-axis, 
horizontal), because that is easier to draw. The fitness is represented in the vertical dimension 
(y-axis). According to our convention, the mountain peaks (X, Y, Z) correspond to low 
fitness; the valleys (A, B, C) correspond to high fitness.  
 
The system by definition always prefers a fitter state to a less fit state, and therefore moves 
from the latter to the former. You can imagine the resulting evolutionary process as a ball 
that rolls down the mountain (for example X) into the valley (for example A) and stops there. 
The steeper the hill, the faster the ball (the system) goes down. The arrows in the illustration 
show in which direction the evolution will go for the different regions of the state space—for 
example from X to A or B, from Y to B or C.  
 
From each state, the system will move towards the neighbouring state with the highest 
fitness. However, it cannot jump over the neighbouring states to a state further away, even if 
this is fitter. The reason is that variation is in general small: only one or a few properties are 
varied at the same time. A ball in B cannot roll over X to A, even though A is lower. This has 
important implications:  
 

11.7 Local	  and	  global	  maxima	  

Every bottom of a valley (for example B) is a local maximum of the fitness function. This 
means that no state in the immediate neighbourhood of B has a greater fitness than B (in other 
words lies lower). A system that comes near B will necessarily have to end up in B. Once in 
B, it can neither move forward, nor back, because every neighbouring state now has a lower 
fitness and is therefore less good than B. The ball can only roll down, not up. The system 
cannot reach A or C from B, even if these states have greater fitness.  
 
The global maximum is the state with the highest fitness of all. In general it is however very 
difficult for a system to reach this global maximum. The system can only try to find the fittest 
state locally, in its immediate neighbourhood. Variation is after all blind: it cannot anticipate 
the peaks and valleys further away and can only “grope” to find its way. There is a high 
probability that the system will become stuck in a local maximum that in fact has a very poor 
fitness, simply because there is no better alternative nearby. Even if a state with very good 

states s 
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fitness were “just around the corner”, the system would still not know how to find this 
maximum.  
 
Conclusion: evolution does not optimise (find the best solution); it only tries to improve the 
local state until it can go no further.  
 
This representation appears to imply that evolution stops as soon as the system has reached a 
local maximum, and that no further improvements are possible after that. Yet in practice we 
see that systems do not remain forever at the bottom of the valley, but sooner or later manage 
to make a big step forward. How does a system get out of the valley? Here are some possible 
mechanisms: 

1. The “order from chaos” principle: increase of variation enables bigger “jumps” and 
thus possibly a leap over a small mountain peak. In general, variations (e.g. 
mutations) are small, so that they remain in the immediate vicinity. If there are no 
fitter states in this vicinity, the system will always return to the local maximum. 
However, now and then a variation occurs (for example a “macro mutation”), that 
possibly ends up in a deeper valley, for example a leap from B, over X to valley A. 
Nevertheless, his happens rarely, because the risk of a drastic reduction of fitness is 
much greater for large leaps than it is for small leaps. 

2. Change in the structure of the fitness landscape: mountains can sink into or rise from 
valleys as a result of changes in the environment. States that used to have a low 
fitness can now get a higher fitness, and vice versa.  

3. *Neutral evolution: this is a non-intuitive mechanism that needs advanced 
mathematics to be demonstrated. When the fitness landscape has a large number of 
dimensions (as is normal in the evolution of complex systems), then there are also 
many paths so that the fitness along that path does not change. A system can “drift” 
along such a path for long distances, until it comes near a deep fitness valley. Then a 
single mutation may be enough to make it descend into that valley. 

 
Example: a polar bear that is a little darker than its fellow polar bears stands out on the ice 
and will thus be less successful at catching seals. When the climate changes and the ice 
disappears, a less white pelt is no longer a disadvantage, but an advantage, and all bears will 
quickly evolve towards the darker colour that is adapted to their new environment. The white 
state is no longer at the bottom of the fitness valley, but has, through climate change, ended 
up on the top of a mountain.  
 
The structure of the fitness landscape explains why the speed of evolution is often very 
irregular: sometimes very fast, sometimes standing almost still. Such a pattern of change is 
called “punctuated equilibrium”: most of the time there is equilibrium and nothing much 
happens, but at certain times, this equilibrium is “punctuated”, or interrupted, through 
sudden, catastrophic changes that produce new forms or species. A position in the middle of 
a broad, deep valley (such as C) halts evolution, since every normal variation entails 
deterioration (decrease of fitness) and is therefore selected against. A position at the edge of a 
deep valley (for example X, close to A) can however result in a sudden, fast descent into the 
valley.  
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An important aspect is the degree of 
ruggedness of the landscape. A landscape can 
be gently rolling with only a few peaks and 
valleys, or it can be craggy with a large 
number of higher peaks and deeper ravines. 
The illustration shows how the same two-
dimensional state space (below) can give rise 
to either a smooth (left) or a rugged (right) 
fitness landscape. The more rugged the 
landscape, the more irregular and 
unpredictable the evolution, and the harder it 

is to find the global maximum.  
 

11.8 Attractors	  and	  basins*	  

A fitness valley can be seen as an attractor in the state space: a region that the system can 
enter easily, but out of which it cannot get on its own. The hillsides that surround the deepest 
point form the basin of the attractor: these are all the points in the state space from where 
further evolution will normally end up in the valley or attractor. The different basins are 
separated from each other through “mountain ridges”: boundaries from which you will either 
go down into the one valley, or into the other. For example, in the one-dimensional drawing: 
X and Y are the mountain ridges separating A, B, and C. 
 
The illustration below, which can be seen as a fitness landscape viewed from above, or as a 
phase portrait of a dynamic system, illustrates the principle. The grey areas are valleys or 
attractors; the white areas around them are basins. The arrows show the direction of 
evolution, and the irregular dividing lines represent the “mountain ridges” dividing the 
basins. The name “basin” comes from the analogy with water reservoirs: the attractors can be 
seen as lakes in a mountainous landscape. The arrows then show the direction along which 
the rainwater flows down the hills, and the dividing lines show the divisions between the 
reservoirs or basins.  
 

 
 
Note that the concepts of attractor and basin apply to a wider variety of phenomena than the 
concept of fitness landscape. Indeed, they can be defined even for processes where no fitness 
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value can be determined. Attractors can also exhibit more complicated shapes or behaviours 
than the simple maxima of the fitness function. For example, a “limit cycle” is a closed loop 
in the state space along which the system moves continuously, without ever halting. The 
defining property of an attractor is however still that of a region in state space that the system 
can enter, but not leave. In that sense, an attractor is an essential illustration of the principle 
of asymmetrical transitions: certain transitions are preferred above others, even when you 
cannot attach a fixed fitness value to the resulting state.  
 
Fitness, like all concepts in this book, is defined relationally, which means that it is always 
determined relative to something else. You can never talk about the objective, absolute 
fitness of a system or state, only about its fitness relative to another state and relative to a 
certain environment. Higher fitness of state A relative to that of state B means that selection 
prefers A to B, and that the chance that B will be replaced by A is larger than the chance that 
A will be replaced by B (what we called an “asymmetrical transition” in 10.4). 
 
Example: a rabbit that can run at 30 kph in an environment where the foxes can only go 20 
kph will be a lot fitter than a rabbit that can only go 15 kph. This means that there is a larger 
chance that this rabbit and its descendants will survive and take the place of the slower 
rabbits, than the other way around.  
 
If we know these relative probabilities of survival, we can in general calculate an absolute 
probability of survival in the long term, and thus a fitness value. If we can determine a fitness 
value for every state, then we can represent this geometrically as a fitness landscape. In such 
a fitness landscape, an evolving system will always choose the direction “down”, and end up 
at the bottom of a valley.  
 
Now assume that we know the relative preferences of A over B, of B over C, etc., but that the 
following happens: B is preferred over A, C over B, but A over C. Assume that we could 
determine a fitness metric F for each of the states, then this would imply that F(A) < F(B) < 
F(C) < F(A). This would imply that F(A) < F(A): the fitness of A is both larger and smaller 
than itself! This is obviously impossible, and therefore we cannot determine an absolute 
fitness metric F(A).  
 

A B

C

D

 
 
In this situation, A, B and C could still be part of an attractor, in the sense of a set of states 
that is preferable as a whole, even when no permanent preference can be made between the 
individual states within the attractor. The simplest case is a so-called limit cycle, where the 
system continuously passes through the transitions A → B → C → A → B → ..., and keeps 
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returning to the same states. Although it is not possible to say that one of these states is fitter 
than the other two, it is possible that each of these states is absolutely fitter than a fourth state 
D, because A, B or C are always preferred over D, and the system never returns from A, B or 
C to D. Note that such a limit cycle by definition points towards a system far from 
equilibrium (see 3.6), because the system never stops changing.  
 
Example: Consider the system consisting of rabbits and foxes together. If we no longer want 
to determine the fitness of an individual rabbit, but of the entire system, we will find that this 
is similar to a limit cycle, with the system regularly going through four states: 
 

(many rabbits, few foxes) → (many rabbits, many foxes) → (few rabbits, many 
foxes) → (few rabbits, few foxes) → (many rabbits, few foxes) → ... 

 
The reason is that an increase in the rabbit population because of an abundance of food leads, 
after a delay, to an increase in the fox population, which in turn leads to a decrease in the 
rabbit population, because more rabbits are eaten by foxes. This is followed by a decrease in 
the fox population, because there are not enough rabbits left to feed all mouths. Thus, the 
system does not end up in an equilibrium, but continues moving cyclically from one state to 
the next. We can therefore not determine an absolute fitness for each of these four states. We 
can however imagine states that are less fit than these four states. For example, a state (very 
many rabbits, very many foxes) will quickly disappear, because the rabbits die off both 
because they are being eaten by foxes, and because there is too little grass. Such a state will 
therefore never occur in normal circumstances. This state belongs to the basin of the attractor 
formed by the limit cycle above: the trajectory through that state will quickly end up in one 
of the states of the limit cycle. 
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Chapter	  12. The	  systems	  approach	  of	  evolution	  

12.1 Introduction	  

As we have noted before (2.4), the problem with traditional Darwinian or neo-Darwinian 
theory is that it is too reductionist, being only concerned with a single component (an 
organism or a gene) in a given environment. Self-organisation, systems theory and the CAS 
approach have drawn attention to other, more holistic phenomena that are also important in 
the evolution of complexity. Their emphasis lies on the manner in which different 
components interact and co-evolve, together forming a larger whole.  
 
The question is how we can integrate all these approaches and phenomena in one coherent 
conceptual framework. The Austrian theoretician Rupert Riedl has suggested that we can 
solve this problem by developing a systems theory of evolution, which situates the concepts 
of variation and selection in a more holistic or systemic frame. The problem is that the more 
components and interactions we consider, the more complex the model becomes. This in turn 
makes it harder to produce predictions or explanations. The CAS approach has tackled this 
problem by relying on computer simulations, but through this, it has lost some of the 
conceptual clarity and intuitive understanding. Still, systems theory offers some very simple 
conceptual tools, such as the subsystem—supersystem distinction, that can be directly 
applied to the processes of variation and selection. As we will show now, this allows us to 
classify the different types of evolutionary processes in a simple manner, and integrate them 
in a broad framework. In the next chapter, we will move in the opposite direction, and apply 
the evolutionary approach to understand where different types of systems come from.  
 

12.2 Sequential vs. parallel	  variation	  and	  selection	  

We will begin by applying the distinction between sequential and parallel (section 4.4) to the 
elementary processes of evolution. This gives us the following types:  
 

• Sequential	  

Sequential variation means that one state follows another one. There is a strict sequence of 
different states. At any given time, only one state is being tried out by the process.  
 
Example: a bottle in the sea is pushed around by wind and waves. The bottle can only be in 
one place at the time. 
 
Sequential selection means that one of the states in the sequence is retained, so that the 
sequential variation stops. This means that all other states of the sequence are being 
“rejected” or eliminated. 
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Example: the bottle washes ashore on an island, and remains there. The stranded state is 
selected for, the drifting states are eliminated.  
 

• Parallel	  

Parallel variation means that different states are being tried out in parallel, at the same time. 
This assumes that at a given moment different specimens or copies of the system exist, each 
having its own state. Parallel selection eliminates the maladapted specimens and retains the 
adapted ones.  
 
Example: bacteria develop resistance to an antibiotic. 
 
At any given time there are billions of bacteria present in the body of the patient, all 
descended from one or a few introduced germs. These bacteria continuously reproduce 
through division. Every new bacterium is potentially a variation on the other, because of 
mutations: small mistakes in the copying of DNA of the bacterium. All together, the bacteria 
exhibit an enormous number of variations on the basic pattern. Some of these variations are 
more resistant to the antibiotic and will therefore survive longer. If the bacteria manage to 
produce enough descendants with enough variations, they will sooner or later discover a state 
that is resistant and that will thus continue to reproduce. 
 

• Relationship	  between	  both	  types	  

Parallel variation is the typical form of variation as conceived by Darwin and the biologists 
inspired by his theory. They assume that living organisms have multiple offspring that are all 
different. These descendants live side by side (in parallel), and in mutual competition. The 
larger the number of parallel variants (number of descendants, population), the larger the 
chance that one or more of them will have a state that is selected for. The more horses you 
bet on in a race, the larger the chance that one of them will win. 
 
Thus, parallel variation is intrinsically more efficient than sequential variation. That does 
however not mean that sequential variation cannot lead to fast evolution. Sequential variation 
can be made more efficient by speeding up variation (i.e. going through a larger number of 
different states per unit of time). This is for example what we find in the “order from chaos” 
principle: the harder you shake the box with paperclips, the faster you reach a state where the 
paperclips are all hanging together.  
 
Sequential variation is more typical for physical, computational or mental systems. 
Conscious thought is largely sequential: we can only focus on one potential solution at a time 
and if it turns out that it does not fit, we focus on the next variation, etc.  
 
Evolution of knowledge happens both in parallel and in sequence: 

• Sequentially: a scientist of philosopher considers different possible solutions for a 
problem, one after the other (variation) until one is found that solves the problem 
(selection). 
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• Parallel: different thinkers search for a solution to a problem simultaneously. If one of 
them is successful and finds (part of) the solution, the others will in general adopt this 
solution and combine it with their own results.  

 
Most computers still work sequentially: they cannot execute more than one instruction at a 
time. It is however common to simulate parallel processes on computers. Your computer can 
for example run several programs at the same time. In fact, these programs do not run 
perfectly synchronously, but the processor spends a few milliseconds on the first, then the 
next, then the next, ... returning to the first, and so forth. This process goes so fast that it 
seems as if the different programs are executed at the same time. Because processors are so 
fast these days, they can simulate a “population” of systems varying in parallel, for example 
an artificial ecosystem with virtual organisms that evolve simultaneously. 
 
Traditional evolution theorists, who work in a biologically inspired framework, in general do 
not consider sequential variation and selection. For them, it is still “replication” (making 
parallel copies with small variations) that is necessary for evolution. The fact that computers 
work sequentially and still are highly effective in the simulation of parallel evolution shows 
however that there is no fundamental distinction between both types.  
 

12.3 Internal	  vs.	  external	  variation	  

Another fundamental distinction made in the systems approach, namely the distinction 
between what is inside the system boundary (internal, system) and what is outside of it 
(external, environment), also yields an interesting analysis of the different types of 
evolutionary processes.  
 
Variation is in general internal, meaning that the components or properties of the system vary 
on their own, without any outside input. Examples are mutations in the DNA of an organism, 
and thought processes in the brain. Essentially this means that the system visits different 
states in its own, predefined state space. Most evolutionary theories assume internal 
variation, because this is easier to describe.  
 
Nevertheless, variation can be external, meaning that there is an exchange of components 
with another system. In a sense, this implies the creation of a new system, with new 
components, and therefore a new state space. 
 
Example: Sexual reproduction: pieces of DNA of the mother and the father are recombined to 
form the DNA of the child. Note that because the DNA of the father and the mother are 
highly similar (they belong to the same type of system), in practice you can describe 
recombination in the same way as mutation, i.e. as internal variation within a given state 
space.  
 
Example: symbiosis: two organisms of a different type are interdependent, and through co-
evolution they have adapted so much to each other that they form, in a sense, a new 
organism. For example: 

• Lichen is a symbiosis of a type of alga and a type of fungus. 
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• Eukaryotes (complex cells, such as those in our bodies) contain mitochondria, 
energy-producing organelles that are descendants of free-living bacteria that have 
penetrated the cell. 

• In our gut live bacteria that are necessary for our digestion. 
 
Example: chemical reactions: two molecules come into contact with each other and exchange 
electrons and/or atoms, resulting in one, two, or more molecules of a new type.  
 
 Na (sodium, metal) + Cl (chlorine, gas) → NaCl (table salt) 
 

12.4 Internal	  vs.	  external	  selection	  

In the traditional theory of evolution, it is assumed that selection is external, meaning 
determined by what is happening outside the system. States that are not adapted to their 
environment are eliminated. For example, a woolly mammoth in a warm climate or a white 
rabbit in a dark forest are poorly adapted and will therefore be selected against in favour of 
shorthaired or dark variants.  
 
Selection can however also be internal: intrinsically unstable states disappear. Such states are 
eliminated independent of the environment. For example, an irregularly magnetised piece of 
iron in which some of magnets point in the direction opposite to the direction of the majority 
is unstable.  
 
Internal selection is typical for self-organisation: the system itself determines which state 
“works” and which does not. For example, the state in which all internal magnets are aligned 
is preferred above other states. Internal selection can also be found in biology. For example, a 
nonviable embryo is spontaneously aborted before it comes into contact with the 
environment.  
 
Internal selection is essential in mental evolution. Scientists trying to solve a problem will 
already reject the majority of possible solutions (variations) based on their own, internal 
selection criteria (for example incoherent, too complicated, contradicting known facts, etc.). 
Only when the idea has survived this internal selection, will it be tested in the outside world, 
for example through a scientific experiment. This is the phase of external selection.  
 
In general, each variation will be selected internally before it meets the outside world and 
there undergoes external selection. This explains why many variations (especially the mental 
ones) appear intentional or guided. The original variations were blind, but most of these have 
been eliminated by internal selection, based on knowledge gathered earlier, so that only the 
best ones remain.  
 

12.5 Generalised	  theory	  of	  evolution	  

The traditional, biological version of evolution assumes parallelism, internal variation and 
external selection. This is however a very restricted perspective: you also need to take into 
account sequential processes, external variation and internal selection. If you do that, many 
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processes that do not fit into the strict Darwinian framework, can be described perfectly well 
through variation and selection: for example, self-organisation, symbiosis, thought processes, 
chemical reactions, etc.  
 
The fact that most authors do not distinguish between these different classes of processes 
produces much needless controversy and confusion. For example, some describe self-
organisation as based on selection, while others claim that self-organisation belongs to a 
completely different category that has nothing to do with selection. The concept “natural 
selection” (selection by nature, that is, by the environment) is often used to indicate classical 
Darwinian selection, but in fact this helps very little for the prevention of confusion, because 
self-organisation is also a “natural” process. 
 
On a more fundamental level, we have to note that from a system theoretical perspective, 
there is no strict distinction between the different types: what is external for a subsystem, is 
in general internal for the supersystem that comprises this subsystem, and vice versa.  
 
Example: an embryo that does not survive because it is unable to implant in the uterus is the 
victim of external selection: it was not adapted to its environment (the uterus). From the point 
of view of the mother (the supersystem), on the other hand, the failed pregnancy is an 
example of internal selection: the embryo was eliminated before it came into contact with the 
outside world.  
 
Example: the input of the father’s DNA via sperm is external variation for the mother 
(system), but internal variation for the species to which both father and mother belong 
(supersystem).  
 
A set of subsystems that are evolving in parallel can formally also be seen as one 
supersystem that is evolving in sequence, and vice versa. The state of the supersystem is 
simply the Cartesian product of the states of the parallel evolving subsystems (see 8.5). 
 
Example: You can describe the movements of two billiard balls on a table with two parallel 
trajectories, each in a two-dimensional state space (x coordinate = long side of the table, y 
coordinate = short side), or with one, sequential trajectory in a four-dimensional state space 
(x coordinate ball 1, y coordinate ball 1, x coordinate ball 2, y coordinate ball 2). 
 
Internal or external, sequential or parallel: in the end this is merely a matter of perspective. In 
practice the perspectives are important, though, because they can make a description 
impossibly complicated or very simple.  
 
Example: If you were to describe a colony of a trillion bacteria, each with a hundred genes 
that can vary, as one sequentially evolving supersystem, you would need a state space of a 
hundred trillion dimensions. It is much simpler to describe the system from the point of view 
of one bacterium that explores a hundred-dimensional state space, and to assume that the 
other bacteria are doing the same in parallel. 
 
Overall conclusion: From a system-theoretical perspective, all evolutionary processes can be 
understood as a result of variation and selection. This includes physical, biological, mental 
and socio-cultural processes. This philosophy is called selectionism, (universal) selection 
theory, or universal Darwinism.  
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Chapter	  13. Supersystem	  transitions	  

13.1 How	  does	  evolution	  lead	  to	  more	  complex	  systems?	  

In the beginning (just after the Big Bang that created the Universe), there were only 
elementary particles: no atoms, molecules or other, more complex systems. As evolution 
progressed, increasingly complex systems were added. We will now research the basic 
mechanisms that have led to this complexification. In this chapter, we will focus on structural 
complexity, that is, the static structure of systems, rather than their dynamical behaviour or 
function. The question that we will discuss is, how do a number of components (subsystems) 
come together to form a supersystem? This evolutionary leap to a higher level of complexity 
is what we will call a supersystem transition. 
 

13.2 Interactions	  

All systems or components are capable of interactions with other systems. If this were not the 
case, we would never be able to observe them. According to the principle of the identity of 
indiscernibles, this would mean in practice that they simply would not exist.  
 
Interaction can be seen as action followed by reaction: the state of the one system influences 
the state of the other system; output of the one becomes input of the other. The state of the 
other system in turn in general influences the state of the one.  
 

 
 
Examples: 

• Two magnets attract or repel each other. The north pole of each magnet attracts the 
south pole of another magnet, but repels its north pole. 

• Tug-of-war: two groups pull on each end of a rope to try to get the other group across 
the line.  

• A discussion or negotiation between two people. One person says something, the 
other answers. Argument or proposition is followed by counterargument or 
counterproposition.  

 
Interaction is a process of variation, but two systems are involved. The process can be 
described as a curve in their shared state space (Cartesian product of the individual state 
spaces). For example, tug-of-war can be described as a variation of the mid-point of the rope 
in relation to the line that separates both parties. Interaction is therefore fundamentally 
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equivalent to other forms of variation and should thus satisfy the same evolutionary 
principles. This means that interaction will in general be subject to selection: certain of the 
shared states will be fitter and therefore be preferred.  
 

13.3 Bonds	  

Variation stops when it has reached a joint state (or set of states) that are stable (meaning a 
valley or attractor in the fitness landscape defined in the joint state space). At that point in 
time, interaction has been stabilised. The joint state is “fixed”. The systems have adapted to 
each other (the one fits in the other). 

 
Examples: 

• The two magnets stick together, the north pole of the one to the south pole of the 
other.  

• The discussion ends when both interlocutors agree with each other (or have given up 
hope to convince each other, they have “agreed to disagree”). 

• Two symbiotic organisms (e.g. a hermit crab and the sea anemone that grows on its 
shell) have developed a stable partnership. 

• The most traditional example is a molecule, in which the atoms are bound together. 
Atoms in turn consist of bound elementary particles: protons, neutrons and electrons. 

A

B

A+B
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Such a joint, stable state is called a bond. The two systems are bound together: the one 
cannot do anything without pulling the other along with it. By definition, the one can no 
longer vary independently of the other: if one varies, the other has to come along.  
 
Examples: 

• If the one magnet is moved, it will pull the other magnet along with it.  

• If two people have reached an agreement, and the one does something that concerns 
this agreement, he or she will have to involve the other.  

 
A bond is a relative constraint, that is, a restriction of the freedom of variation in the shared 
state space, especially the freedom of movement relative to each other. A bond thus reduces 
the freedom of the systems, but increases the predictability of their behaviour.  
 

13.4 System	  as	  constraint	  on	  subsystem	  

We can generalise the idea of a bond between two systems to a bond between several 
systems. For example, a complex molecule binds a large number of atoms, while people in an 
organisation are bound together by the collective rules that they comply with. In general, 
these rules mean that the members cannot undertake certain actions without the agreement of 
the others.  
 
It is the bond or constraint that binds components in a (super)system. If the components can 
vary independently from one another, there is in fact nothing that keeps them together. Then 
they do not form a system, but an aggregate.  
 
Examples: 

• Sand is an aggregate of grains of sand. Sandstone is a bond (and therefore a system) 
of grains of sand.  

• People that happen to walk across the same square form an aggregate. The members 
of a football team that is playing on that same square form a system. After all, these 
members depend on each other.  

 
Constraint is what distinguishes a system from its environment: that which follows the rules 
is part of the system, that which does not, does not belong to the system.  
 
Examples: 

• A piece of sandstone clearly stands out from the loose sand in which it lies. 

• Individuals that do not follow the rules are expelled from the organisation. 
 
The development of mutual constraint on a collection of loose components is therefore an 
essential step in the creation of a system. For example, the essence of the transition from 
loose bricks to a building (system) is bricklaying. A system is a whole with emergent 
properties. These properties exemplify the relationships between the components, rather than 
the individual components. It is because of bonds that these relationships become more 
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stable, and therefore more important or cahracteristic, than the properties of the individual 
components.  
 
Example: 
 
When we stick two billiard balls together with a rod, the individual balls lose the freedom to 
take any random position, since the one will have to remain at the same distance of the other. 
If we want to describe this new system formed by the connected balls (a type of dumbbell), 
we will in general no longer use the individual coordinates (x1, y1) and (x2, y2), but the 
coordinates of the centre of gravity (xm, ym), together with the angle α at which the dumbbell 
is oriented, since these represent the only remaining degrees of freedom. The coordinates of 
the centre of gravity are not really emergent, since they are determined as the average 
(derived from the sum) of the individual coordinates. The angle on the other hand is an 
emergent property, which is not a simple sum of individual properties.  
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Every process of mutual variation and selection of components will therefore sooner or later 
produce a system. An interesting question is now how many components are in general 
needed to form a system.  
 

13.5 Closure*	  

It can happen that two interacting systems that reach a bond, have “used up” their interaction 
capacity. This means that the individual systems can no longer interact with other individual 
systems. 
 
Examples: 

• Na + Cl → NaCl: the NaCl molecule (table salt) cannot absorb any further atoms. 

• H2 + O → H2O (hydrogen + oxygen = water molecule). The H2O molecule can still 
absorb another oxygen molecule, producing hydrogen peroxide: H2O2. After this no 
further reaction is possible. 
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• Marriage: In general, the bond between two people excludes other relationships. 
 
In other cases, new components can still join the bond.  
 
Examples: 

• Polymers, i.e. long chains of smaller molecules that keep 
growing unlimitedly. DNA for example is a polymer. 

• Staples that slide into each other and form a forked chain.  

• Organisations that continue accepting new members. 
 
Such “growing” systems continue to have “junctures” to which 
new components can attach themselves. Each additional 
component uses a juncture, but adds a juncture in turn. However, it can also happen that the 
junctures hook into each other, for example, a polymer in which the last molecule hooks into 
the first one.  
 
In that case, all junctures can be “used up”. All components are completely hooked into each 
other, without room for further interaction with “outsiders”. In that case, we speak of 
structural closure: the system has closed itself off and no longer provides access to outsiders.  
 

Examples	  of	  closure	  

• A benzene molecule consists of a closed, hexagonal ring of carbon (C) atoms that are 
each also bound to a hydrogen atom (H). Other hydrocarbon compounds occur in the 
form of chains that can grow in length indefinitely by adding extra atoms to the ends. 

• In the illustration below, you see bar magnets that are bound together via the 
attractive forces between their north and south poles. The assembly on the left is 
“open”: there is still place to add new magnets. The assembly on the right is “closed”: 
all junctures have been used.  
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Properties	  of	  closure 

• Closed systems have the advantage of being more stable: all components are attached 
at all junctures. With open systems on the other hand, the components at the ends are 
only partially attached. These can therefore come loose more easily.  

• The disadvantage of a closed system is that it can no longer grow.  
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• A closed system has a clearer distinction between system (inside) and environment 
(outside), because open systems can still take up components from the environment, 
or lose components when they come off.  

 

13.6 Selection	  of	  stable	  combinations	  

Assume that different systems interact with each other. After a while, this interaction 
produces different bonds. Different combinations of building blocks arise at random. Those 
that “work” are retained. These building blocks fit together, like pieces of a jigsaw. If the 
combination is closed, it will no longer grow. Individual components can then no longer 
interact with other components. A closed system as a whole can however still interact with 
other systems. These interactions are of a different type than the ones between subsystems. 
 
Examples: 

• Football players in a team interact by passing the ball to each other; football teams 
interact by playing matches against each other. 

• Protons and neutrons in a nucleus interact through the “strong” nuclear force between 
particles; atoms interact through the exchange of electrons. 

 
These interactions on the level of the supersystem also lead to bonds between supersystems. 
This results in a super-supersystem.  
 
These bonds at a higher level are in general weaker than those at the lower level. “Weaker” 
means less stable, less fit, or easier to break. The reason for this is that evolution prefers the 
fitter configurations and will try these first before it experiments with the less fit ones. Only 
when all the “strong” bonds have been realised will variation get a chance to try out the 
remaining “weak” bonds. 
 
Examples:  

• The bonds between elementary particles in an atom are much stronger than the bonds 
between atoms in a molecule. You need massive particle accelerators that produce a 
lot of energy to split an atom. To split a molecule, a chemical reaction in general 
suffices.  

• People or animals in a group are easier to drive apart than the cells in their bodies.  
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Conclusion: Every system can serve as a building block for a supersystem of a higher order. 
This supersystem can in turn serve as a building block for a supersystem of an even higher 
order. In this way, ever-higher levels of structural complexity arise, for example: 

• elementary particles → atoms → molecules → macromolecules → cells → 
multicellular organisms → societies. 

• rocks → planets → solar systems → galaxies → clusters of galaxies.  
 

13.7 Hierarchical	  architecture	  

We have seen that evolution constantly generates higher levels of supersystems. The more 
complex the system, the later its emergence. Each of these systems still consists of all the 
components out of which it was originally formed. Therefore, every system can be analysed 
or “decomposed” into its constituent subsystems, which can in turn be reduced to their 
constituents, etc., to the lowest level, the elementary particles. As we have seen in 4.4, such 
consecutive layers or levels of “subsystems in systems in supersystems in ...” are called a 
hierarchy.  
 

   
Such a hierarchy is an example of what in mathematics is called a “tree structure” (imagine 
the illustration above turned upside down, with the starting point as the “root” of a tree and 
the rest as “branches”). This is defined by the fact that every smaller branch (further down) of 
the tree originates from exactly one larger branch (further up). This means that in a hierarchy 
every system can only belong to one supersystem.  
 
Note: This is in practice not always the case. A system can be a subsystem of several, 
overlapping supersystems simultaneously. A person can for example belong at the same time 
to a family, a football team and a company. This is however rare, because the probability is 
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small that the same state of the system would satisfy different, independent constraints or 
bonds. Because people are very complex systems, with a very large state space, it is easier for 
a person to comply with several constraints at the same time (play several “parts” or perform 
several functions) than it is for an elementary particle.  
 
In practice, the probability of finding a fit combination through blind variation is very small, 
because there are many more unfit states than there are fit states. An additional constraint on 
the combination makes it even less likely. Because of that, most complex systems are 
structured hierarchically. H.A. Simon calls this type of organisation the “architecture of 
complexity”. 
 

13.8 Nearly	  decomposable	  systems	  

Decomposition into subsystems always remains an approximation of reality. Through 
decomposition we have lost the essential cohesion of the system, i.e. the constraint or the 
bond that binds the parts into a whole and thus gives the system its identity. At each level, the 
system is more than the sum (aggregate) of its subsystems. It has emergent properties that 
were created by the constraint or bond.  
 
Example: A billiard ball is round, and has no orientation or direction. Two billiard balls stuck 
together form a kind of dumbbell or rod that points into a certain direction. The orientation or 
“direction” is an emergent property.  
 
In practice, decomposition is still useful. After all, it breaks the weaker bonds that form the 
supersystem, but keeps the stronger bonds that form the subsystems. The components that 
remain after decomposition are more stable than the original system.  
 
For those reasons, such systems are called nearly decomposable (a concept introduced by 
H.A. Simon). They are not completely analysable or reducible to their parts, but neither do 
they form one, indivisible whole. In practice, both reductionists and holists are right: there is 
a whole that is more than the sum of its parts (holism), but the separate parts still retain 
numerous fundamental properties and their separation is therefore a useful way to reduce 
complexity.  
 

13.9 Conclusion:	  increase	  of	  structural	  complexity	  

Variation and selection will spontaneously assemble components into higher-order systems, 
and will subsequently use these as building blocks for systems of the next level. During this 
process both distinction and connection increase: 

• Distinction, because binding or closure of an assemblage of components creates a 
clear demarcation or distinction between “inside” and “outside”; closure 
differentiates systems. 

• Connection, because the components within a supersystem are connected to each 
other: binding or closure integrates the subsystems within a system. 
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As we noted earlier: differentiation + integration = complexification. This complexification 
in general takes the shape of an ever-growing hierarchy of systems (more levels, more 
components per level).  
 
Such complexity is however still purely static. Moreover, bonds restrict variation and thus 
reduce flexibility or mobility. If we consider living beings, intelligence, society and culture, 
we will find their complexity rather in variability or in adaptivity. To clarify this, we need to 
introduce another kind of system-building mechanism: the metasystem transition. 
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Chapter	  14. Metasystem	  transitions	  

14.1 Adaptivity	  

All evolving systems “aim” in a certain sense for fitness, meaning that selection implicitly 
prefers fit systems. It is not necessary for a system to have a built-in goal or plan in order to 
attain fitness.  
 
Fitness is based on internal stability and external adaptation to the environment. A system 
that occupies a good “niche” is adapted: it has reached a state that can maintain within the 
given environment. A subsystem is for example adapted to the system that it is a part of. 
Once adapted, the system will in general stop evolving: it has reached the bottom of a valley 
in its fitness landscape.  
 
However, when the environment itself changes, it no longer suffices to be perfectly adapted 
to the given situation or niche. What was fit at a given moment is in general no longer fit 
after the environment has changed.  
 
Example: In the snow, it is fit for arctic hares to have a white colour, so that they are less 
visible for predators. When the snow melts, the white colour becomes much more obvious, 
and the arctic hare will be eaten sooner.  
 
In a changeable environment, it is useful to be able to adapt immediately, rather than having 
to wait until variation and selection have evolved a new state.  
 
Example: if the warm climate continues long enough, natural selection will give the 
population of arctic hares a darker fur by eliminating the lighter ones generation after 
generation. If on the other hand the snow only melts in summer and returns in winter, there is 
no time to wait for natural selection of the population of arctic hares. In that case, it is more 
useful for the hares to have this colour change “programmed”: white hairs fall out in spring 
and brown hairs grow in their place, with the opposite happening in autumn.  
 
In this example, the change in the environment is always the same, and therefore predictable. 
This makes it easier for the genes to evolve a pre-programmed adaptation. In general, 
however, changes in environment are unpredictable. In that case, adaptation needs to be 
flexible, rather than pre-programmed.  
 
Example: a chameleon or squid can immediately change colour to adapt to the environment, 
whatever that environment may be. 
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Definition: Adaptivity = the ability to 
change the state of a system in such a way 
that the changes in the state of the 
environment are compensated for, and the 
system remains fit or adapted, despite the 
changed environment.  
 
In fact, adaptivity is a form of control (see 
5.3), but now with fitness as the goal. As a 
reminder, control requires a loop with 
negative feedback, where incoming 
perturbations (which lead to deviations 
from the goal state) are observed and 
compensated for with the correct actions. 
Actions can change both the internal state 
(properties of components, for example 
skin colour, temperature) and the external 
state (relationship to the environment, for example proximity to a shelter).  
 

14.2 Metasystems	  

Suppose that a system has adaptivity: it varies when the environment varies, but in such a 
way that its essential properties, its capacity to survive, remain. This means that the variation 
is no longer random, but controlled. Thus, there has to be some sort of control system present 
that directs the variations of the system. The combination of the original system and such a 
control system is called a metasystem. The original system that is controlled by the 
metasystem is called an object system.  
 
A metasystem is not a static constraint, like a supersystem, but a dynamic constraint, which 
adapts continuously.  
 
Example: a multicellular organism is more than a supersystem consisting of cells that are 
bound together. Different cells of different types execute different actions, depending on the 
situation: for example, muscle cells may or may not contract, nerve cells may or may not pass 
on signals. These cells are coordinated by a control system, which can be localised (e.g. in 
the brain), but which can also be distributed (see 3.3) over all the cells (such as the DNA 
housed in every nucleus). In fact, our body contains a multitude of control systems working 
at different levels, where the one affects the goals of the other.  
 
Control means that the system is varied in specific ways that depend on the perceived 
situation. The system undergoes controlled variation rather than random or blind variation. 
Controlled variation allows the system to maintain its fitness in various circumstances, while 
avoiding the loss of fitness that is the most probable result of blind variation.  
 
Controlled variation requires in particular that the system have knowledge about which 
variation is appropriate in the given circumstances. As discussed earlier (section 5.8), 
knowledge can be expressed through condition-action rules of the form: IF a certain situation 
is perceived, THEN execute a certain, adapted action. In the short notation:  

perturbations

action

goal  

AGENT

ENVIRONMENT

perception
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condition → action.  
 

14.3 Hierarchies	  of	  metasystems	  

Just like a supersystem is in general comprised in a higher-order supersystem, so too a 
metasystem can be subject to a higher-order metasystem, and so forth. This leads to a 
generalised control hierarchy (section 5.6), which is different from the structural hierarchy 
that we have discussed above (13.7). The simple formula for this is as follows: 
  
 metasystem = control of object system 
 
The next level in the hierarchy is then described as:  
 
 meta-metasystem = control of metasystem, etc.  
 
Example: thermostat = control of the heating; presence sensor = control of the thermostat. 
 
This can also be expressed using condition-action rules. The metasystem of the first level 
varies the state of the object system according to certain rules. The rules for the metasystem 
of the second level then determine the variation of the rules of the first level. 
 
Example: The thermostat varies the amount of heat that is produced according to the rules: 
temperature lower than goal temperature → turn heating on; temperature high enough → turn 
heating off. The presence sensor varies the setting of the thermostat, and therefore the way in 
which the thermostat regulates the heat influx, according to the rules: someone in the room → 
set goal temperature to 21º; room empty → set goal temperature to 16º. 
 
Just as evolution spontaneously leads to higher levels of supersystems, so too does it lead to 
higher levels of metasystems. The emergence of such a higher level is called a metasystem 
transition (MST, a concept introduced by V. Turchin). The reason why variation and 
selection produce such transitions is simple: a metasystem has a greater adaptivity (and 
therefore a greater variety of possible states and actions) than an object system, and will 
therefore be fit in more diverse circumstances, but a meta-metasystem has an even larger 
adaptivity. Thus each MST produces a big jump in the system’s variety of actions and 
adaptivity. 
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While a metasystem will always react in the same way to a given condition, a meta-
metasystem will be able to adapt its reaction by taking into account additional conditions, 
which are typically of a higher, more abstract level. A meta-meta-metasystem will in turn 
have a larger adaptivity than a meta-metasystem. Each mechanism of adaptation can itself 
become subject to an adaptation mechanism on a higher level. The larger the adaptivity, the 
larger the (internal or absolute) fitness, and thus the greater the chance that such a system will 
sooner or later evolve.  
 

Limitations	  of	  metasystem	  hierarchies	  

In spite of these advantages, a hierarchy of metasystems is far more complex in its 
functioning than a system with one or two levels. To determine which action is to be 
executed, the decision has to pass through different control levels, which each have to check 
their own conditions to potentially change the setting of the underlying control level. For this, 
each level needs to receive information about the state from lower levels, process and 
interpret this information, and send the decision back down to the lower levels. A large 
number of control levels thus slows down the decision about which action will eventually 
need to be executed, and increases the chance of errors or miscommunication between the 
levels. Adding metalevels therefore does not only have advantages, but also disadvantages.  
 
Example: Complex bureaucracies with many administrative levels, such as in ministries or in 
large companies, are in general slow and rigid. That is why it is fashionable at present to 
flatten hierarchies and decrease the number of levels.  
 
The solution is to make each control level as intelligent and autonomous as possible, so that it 
can make as many decisions as possible on its own, without needing to involve the higher 
levels. No more hierarchy should be instated than absolutely necessary. The cyberneticist 
Aulin has formulated this principle as the law of requisite hierarchy: the more control the 
lower levels have, the less hierarchical levels are needed to gain control over the global 
situation (and vice versa). 
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Example: the reduction of hierarchy in a company or administration is only possible if the 
employees at the different levels are sufficiently intelligent and informed to work largely on 
their own, without requiring constant supervision or orders coming from above. This is one 
of the reasons why “flat” organisation structures are much more common in the current age, 
with its efficient information technology and well-educated employees, than a century ago. 
 
In evolution, the problem of too many metalevels does not appear: the creation of a new 
metalevel through variation and selection is very difficult and will only occur if there is no 
other way left to increase fitness. In a bureaucracy, on the other hand, it is easy and tempting 
to continuously add new levels, so that managers or civil servants can always be promoted to 
a higher level. In evolution, on the other hand, the existing level will first be extended and 
made as efficient as possible before a new level will be tested out.  
 
The autonomy of the lower-order systems is maintained as much as possible. This means that 
most actions will by default be undertaken by the lower-order systems. These are after all 
very well adapted for this, after hundreds of millions of years of variation and selection. The 
higher-order metasystem will only intervene if the situation becomes too exceptional or 
complex to be solved by the lower-order system alone. In this way, the delays and confusion 
that are likely to appear if you would go through all levels of the hierarchy are avoided in the 
overwhelming majority of cases.  
 
Example: Our respiration and our reflexes (such as pulling away your hand from a hot 
surface) are largely controlled by a lower-order, subconscious system, which works fast, 
efficiently and automatically. In special circumstances, our conscious thought (a higher-order 
system) can intervene and make the lower-order system deviate from its normal settings. For 
example, if necessary we can hold our breath (for example if we know there is a poisonous 
gas present) or force ourselves to walk over hot coals. Our consciousness would however 
become overloaded if it would have to reflect about every heartbeat or breath.  
 

14.4 The	  metasystem	  hierarchy	  of	  Turchin	  

The Russian/American cyberneticist Valentin Turchin has formulated a sequence of the most 
important metasystem transitions in the evolution of life, from primitive animals to human 
culture. We will now discuss it briefly.  
 

• Simple	  reflex	  =	  control	  of	  movement	  

This first level is characterised by reflex movements, where a specific perception by a sense 
organ immediately activates a certain muscle via a connecting nerve. Although we still have 
such reflexes, this level of control is typical for primitive animals, such as sea anemones or 
worms, that have nerves, but do not have brains. These animals always react in the same way 
to the same simple stimuli. For example, touch → sea anemone contracts. 
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• Complex	  reflex	  =	  control	  of	  simple	  reflex	  

When different nerves, coming from different sensors (sensory cells) come together, the 
organism can weigh the importance of the different stimuli or sensations against each other, 
and produce an integrated reaction that considers the different aspects of the perception.  
 
Example: If the sensation “touch” is combined with the visual perception “large” or “small”, 
the animal can react in a more adapted manner: “touch” by something “large” → danger, pull 
away; “touch” by something “small” → prey, eat. 
 
This level of control assumes a crossroad of nerves, where the different stimuli come together 
and are compared, before they are passed on to the muscles that execute the actions. This 
junction forms a rudimentary brain. 
 

• Learning	  or	  associating	  =	  control	  of	  complex	  reflex	  

Complex reflexes are still rigid, and the same combination of stimuli will always lead to the 
same reaction. However, when the environment is complex and changeable, it is useful to 
adapt one’s reactions to new phenomena, that is, to learn new condition-action rules or 
condition-condition rules. Knowledge no longer needs to be inherited, but can be learned 
individually. Learning is therefore a controlled variation of rules.  
 
Learning works through association: if an observed condition A is frequently followed by a 
condition B, the organism learns to make the association A → B. This means that if A is 
observed, it creates a more or less strong expectation of B. The more often the two conditions 
are observed together, the stronger the association or expectation, and the stronger the chance 
that the rule A → B will be effectively applied to predict what will happen.  
 
Example: Pavlov’s experiment: if a dog always gets food just after a bell has rung, the dog 
will begin to salivate when it hears the bell, because it expects food.  
 
Learning also works through reward / punishment of actions (reinforcement): if a condition A 
is followed by an action B, and the result is positive (the organism comes closer to its goal 
state), then the association A → B is reinforced or rewarded. If on the other hand the result is 
negative, the association is weakened or punished.  
 
Example: A rat that perceives a lever and pushes it, is always rewarded with food. The rat 
will soon learn to keep pushing the lever. However, if that same rat gets an electrical shock 
when it pushes the lever, it will learn to stay away from it.  
 

• Thinking	  =	  control	  of	  associating	  

Through learning by association, you can only make connections between phenomena that 
are observed together. Phenomena that have never been observed together are not associated 
with each other. Thinking	  means that you can conceive combinations of phenomena that you 
not necessarily have experienced in reality. You can thus learn rules without having 
experienced them. This is typical for human intelligence, and is absent in animals. 
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Example: We can imagine an elephant wearing a top hat, without ever having seen one, or we 
can consider how we would solve a problem (such as engine failure in a motorboat) that we 
have never experienced.  
 
Thought uses concepts represented by symbols (such as words) that can be combined 
according to certain combination rules (such as grammar and logic). Because the concepts are 
abstract or symbolic, they do not depend on concrete perceptions. This allows for free 
combination, independently of what is happening in the environment. The combination rules 
ensure that this process of variation is still controlled to a certain extent. 
 

• Culture	  =	  control	  of	  thinking	  

We have in general not personally invented the words, concepts and reasoning rules that we 
use, but copied them from others, from the ideas that were proposed to us in society and 
during our education. This dependency limits us in the freedom of our thought, in our 
creativity. New concepts and rules in general arise through a process of socio-cultural 
evolution, over which an individual has no control. Until now, this cultural evolution is still 
mostly a process of blind variation and natural selection of the most useful concepts. It is not 
directed, and therefore not very efficient.  
 
As society and culture become more complex, tools, systems and methods arise for the 
systematic discovery of new concepts. Examples are the scientific method, philosophical 
analysis, artistic exploration, computer programs for the discovery of patterns in data, 
communication technology for the exchange and discussion of ideas... This development 
appears to go faster and faster. It seems as if we are on the verge of a new metasystem 
transition to a higher level of organisation. A plausible conception for this higher system 
level is the global brain, i.e. the intelligent system that emerges from the integration of all 
people and computers on this planet. The Internet here plays the part of the nervous system of 
this supersystem, storing and propagating information, but also supporting the development 
of new concepts and theories.  



137 
 

 

Chapter	  15. Actions,	  Agents	  and	  Organizations	  

15.1 The	  ontology	  of	  action	  

We have presented metasystems as an “active” alternative to supersystems. A supersystem 
emerges by constraining and thus reducing the variation of the component systems. It is a 
rigid assembly. Metasystems, on the other hand, are more variable than their component 
systems. While we explained the evolutionary benefits of such increased adaptivity, we did 
not explain how such a metasystem can actually emerge. To do this, we need to take a closer 
look at the interactions between the components of the system. In the case of a supersystem, 
these interactions stabilize in order to produce a bond: a rigid link. In the case of a 
metasystem, the interactions need to produce a dynamic, adaptive whole, which we will call 
an organization. In order to understand this process, we need to go back to our relational 
ontology, but now with a focus on action.  
 
The ontology started from distinctions (X, Y…) and connections (→). These come together 
in a condition-action or condition-condition rule:  
 
 X → Y.  
 
The dynamic interpretation of this rule is that some condition X is transformed into a 
different condition Y. This change is the simplest possible action or process. It describes a 
transition from some initial state of affairs X (“antecedent”, “cause”) to a subsequent state of 
affairs Y (“consequent”, “effect”). Such elementary action is the minimal building block for 
an evolutionary worldview.  
 
The common modelling approach in science starts from distinctions. By combining different 
distinctions it defines a space of possible states. Processes are then reduced to trajectories in 
that state space, visualizing how the system moves from one state to the next. We have 
shown how the notion of a deterministic trajectory can be generalized for processes that do 
not conserve distinctions, because trajectories can bifurcate or come together. That allowed 
us to explain creative, evolutionary processes in which the information content of a system 
can change. However, in order to describe the emergence of metasystems and other dynamic 
organizations, we need to go a step further, and start from the full network of actions rather 
than just the distinctions that they connect. This leads us to the ontology of action. 
 
The basic philosophy here is that change (“becoming”) is more basic than permanence 
(“being”). Such a process philosophy was already expressed by the Greek philosopher 
Heraclites, who observed that “you cannot step in the same river twice”. Indeed, everything 
around us is constantly evolving. Seemingly invariant objects are merely the outcome of a 
long process of variation and selection of the most stable assemblies. Even the seemingly 
rigid matter out of which these object are built consists of subatomic particles that according 
to quantum mechanics are in reality more like spooky waves that change shape the moment 
you observe them.  
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In the beginning of the 20th century, the need for such a process philosophy was advocated by 
philosophers such as Whitehead, Bergson and Teilhard de Chardin. However, these 
philosophers did not manage to ground their intuitions into a simple, scientific model. Just 
like systems theory managed to make the intuitive philosophy of holism and emergentism 
more scientific, we will now show that the action ontology can provide a scientific 
foundation for process philosophy. 
 

• Reactions	  

The action ontology assumes that reality as a whole is constituted by a huge network of 
interconnected actions of the form X → Y, Y → Z, etc. However, in order to make the 
interconnections between the actions more clear, we will write the conditions X, Y, Z… as 
conjunctions of more general conditions a, b, c, d, … A conjunction of a and b (meaning that 
both a AND b are present) will be written as: 
 
 a + b 
 
In that way, we can express a very specific condition as a conjunction of many more general 
conditions. A state is then merely a conjunction of all the conditions that are “true” or actual 
at a certain moment.  
 
However, a full action ontology would define a state in terms of actions, not conditions. 
Thus, a state can also be defined as the conjunction of actions that are possible in that state 
(because the starting conditions of those actions match the conditions that are part of the 
conjunction defining the state). This is just to show that the old state-based model can be 
translated into the new action-based model and vice-versa. 
 
An action can then in general be written as a conjunction of conditions leading to another 
conjunction of conditions: 
 
 a + b + … → c + d + … 
 
This notation is similar to the one used for chemical reactions, e.g. 
 
 HCl + NaOH → H2O + NaCl 
 
or for elementary particle reactions, e.g.  
 
 n → p + e– + νe 
 
The “conditions” can therefore also be seen as particular categories of particles, molecules,  
resources… that need to be present for the (re)action to take place, or that are produced by 
the reaction. From this perspective, material objects or substances are merely the input and 
output of the reactions that produce and consume them. The actions themselves are primary. 
Two actions are interconnected when the output of the one can be used as input for other, e.g.  
 
 a + b → c 
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 c → d + e 
 
Here the condition c is the “connector” between two reactions. 
 

15.2 Agents	  

The theory of complex adaptive systems starts from the notion of agent. An agent a is a 
producer of actions, where each action is represented by its own “condition-action rule”, e.g. 
b → c. However, the agent itself is not produced or consumed by these actions. We can 
express this in the action ontology in the following way: 
 
 a + b → a + c 
 
This means that a is necessary to transform b into c, but a itself remains the same. In 
chemistry, a is said to be a catalyst. A catalyst enables or facilitates a reaction, but is not 
affected by that reaction. Each agent or catalyst will enable a variety of reactions. Thus, an 
agent is characterized by the collection of reactions, or condition-action rules, that it can 
perform. Each condition that the agent “recognizes”, by reacting to it, constitutes a challenge 
for it: it incites action. 
 
Depending on the state of the overall system, it will perform different actions, with different 
results. These actions change the state of the system as they transform conditions into new 
conditions. These new conditions trigger further actions, and therefore further changes of 
state. Thus, an agent in an environment functions like a dynamical system, characterized by 
a (branching) trajectory through its state space.  
 
This dynamical system will have attractors: regions of the state space that it can enter but 
not leave, and that are surrounded by a basin from where all states lead into the attractor. 
These attractors can be seen as the implicit goals of the agent: if the system is pushed out of 
the attractor and back into the basin by some perturbation, it will eventually return to the 
attractor. The perturbation acts as a challenge or problem that demands the right 
counteraction. Eventually, the agent will have performed some (series of) action(s) that 
transforms the basin state back into an attractor state. Thus, the agent has suppressed the 
perturbation, or “relaxed” (reduced) the challenge. 
 
In conclusion, the definition of an agent in the action ontology is extremely simple, yet it 
exhibits all the properties that can be expected from a goal-directed, cybernetic system as we 
have described it in earlier chapters. 
 

15.3 The	  problem	  of	  coordination	  

While the course of action of a single agent is simple to understand and model, the situation 
becomes more complicated when several agents are acting within the same space. When one 
agent changes the state according to one of its condition-action rules, this will also change the 
conditions for the other agents. These changed conditions may present challenges to them. 
These agents will normally react to the challenge by performing one of their condition-action 
rules, appropriate to the specific condition. This creates a new condition, and thus perhaps a 
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new challenge for one or more other agents, which will react in turn. In this way, challenges 
propagate: they are passed on from agent to agent, being transformed in the process. 
 
However, the different agents will not in general have the same goals. What constitutes 
challenge relaxation (movement closer to the goal) for one agent may actually constitute a 
challenge increase (movement away from the goal) for another one. In this case, we can say 
that these two agents are in conflict or in friction with each other, because the one will tend 
to resist or undo what the other one does.  
 
In the opposite case, the agents are in a relationship of cooperation or synergy: the actions 
of the one support or reinforce the actions of the other. Cooperation is particularly interesting 
when the agents have different condition-action rules (and therefore different “abilities” or 
“skills” to deal with challenges), yet have the same goals (attractors). In that case, a challenge 
that the first agent cannot deal with may be dealt with by the other one. Therefore, the two (or 
more) agents working together can tackle a wider variety of challenges than any agent can 
tackle individually. 
 
In general, agents cannot communicate about their goals and course of actions with each 
other. Each agent has only a very limited view of the present state, and how this can be 
transformed by its own actions. It does not have a long-term perspective or understanding of 
its ultimate objectives. Therefore, agents in general cannot agree about a joint plan of action 
in order to collaboratively reach their goals. Yet, it would be in all agents’ interest if their 
actions would be synergetic rather than conflicting. Achieving such harmonious activity 
constitutes the problem of coordination. Coordination means that the actions of the different 
agents are arranged or ordered, in sequence and in parallel, so as to minimize friction and 
maximize synergy. 
 
Evolution through variation and selection will in general increase coordination. Indeed, 
agents that are in conflict with each other will be less fit than agents that work synergetically. 
An agent whose actions are constantly obstructed or undone by the other agents in its 
neighbourhood will have great difficulty reaching its goals. It will waste a lot of energy or 
resources, and may eventually “die” because of lack of resources.  
 
Evolution can affect coordination on two levels: the level of the individual agents, and the 
level of the system of interactions they together form. On the individual level, variation will 
create new condition-action rules, changing either the condition to which the agents respond, 
or the action by which they transform it into a new condition. Condition-action rules that lead 
to a continuing conflict with the surrounding agents are likely to be eventually eliminated by 
natural selection, and replaced by more synergetic rules. This is not essentially different from 
the way an organism adapts to its environment. What interests us here, however, is evolution 
at the level of the system of interactions.  
 
 
 

15.4 Organizations*	  

Consider an extended network of reactions. For example: 
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a + b → c 
d → b 
g + h → a + c + d 
a → b + i 
i → a + c 
h → a + b 
 

Suppose that you start with the state {h, g}, that is, the resources h and g are both present. 
Now, through the reactions a number of additional resources will be created: a, c, d that can 
be made from g, and b which can be made from d. Thus, the number of resources initially 
increases, until no further ones can be produced using the given reactions to the given set of 
resources. Some of these resources, however, will be consumed without being produced by 
another reaction. For example, h is converted into a + b, but there is no way to turn a and b 
back into h. Similarly, there is no way to recreate g, or to recreate d once g is no longer 
available. Thus, some of the resources will be removed from the set. After all newly 
produced resources {a, c, d, b, i} are added to the initial {h, g}, and all consumed but not 
produced resources {h, g, d} are removed, we are left with a stable set of resources that are 
being produced at least as much as they are being consumed: {a, c, b, i}  
 
In chemical organization theory, a very promising new approach to analysing such networks 
of reactions, such a stable set is called an organization. An organization is an attractor of a 
reaction network: from whatever initial state you start, you will end up in an organization and 
stay there. Thus, reaction networks self-organize into organizations: they spontaneously 
evolve to a state in which all resources are fully recycled, i.e. nothing gets lost, nothing new 
is added. Such a network of reactions in which the set of basic resources is conserved is self-
sustaining: it dynamically rebuilds itself, a property that has also been called “autopoiesis” 
(self-production).  
 
Here is an example of a (very simplified) organization showing how the basic ecosystem of 
the Earth functions: 
 

→ sunlight 
plants + sunlight + carbon dioxide + minerals → plants + oxygen 
plants + animals + oxygen → animals + carbon dioxide + detritus 
detritus + bacteria → bacteria + carbon dioxide + minerals 

 
 
This describes the recycling of oxygen, carbon dioxide and minerals by plants, animals and 
bacteria, fuelled by the energy of the sun (which enters the system from the outside, which is 
why the reaction producing it has no input within the system). This is subtler than a simple 
cycle, because reactions require several inputs while producing several outputs that are all 
needed to sustain the organization. But the system is properly autopoietic, as it produces all 
its essential components: nothing that is needed to sustain the organization gets lost; nothing 
new is added.  Note that plants are the agents in the second reaction: they produce oxygen 
out of sunlight carbon dioxide and minerals but without being consumed in the process. The 
same applies for the animals in the third reaction, and the bacteria in the last. 
 
Ecosystems and organisms are organizations in this sense: they recycle all their essential 
parts while relying on an external output of resources to build up their components. But what 
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chemical organization theory shows is that practically any sufficiently complex network of 
reactions will self-organize by reaching an attractor that is an organization. Thus, the action 
ontology, while starting from phenomena that are essentially changing, can explain the 
emergence of invariant, self-sustaining systems. Within such an organization, the different 
actions are synergetic, as they help each other sustain the organization. Thus, the different 
agents and actions within an organization are coordinated. Yet, the agents did not need to 
agree on a plan, or follow the instructions of a supervisor in order to work in a coordinated 
manner. The coordination here evolves spontaneously, through self-organization. 
 
One way to better understand such decentralized, spontaneous coordination is the concept of 
stigmergy. Stigmergy means that the results of actions stimulate the performance of 
subsequent actions. For example, if someone adds a paragraph to a Wikipedia article, this 
will stimulate later readers of that article to correct or add to that paragraph. The people 
contributing to Wikipedia do not follow a plan or instructions, yet their contributions are 
automatically coordinated via stigmergy. More generally, reactions will produce new 
conditions functioning as challenges for further reactions or agents to transform these 
conditions further. The coordination emerges because all reactions have access to the same 
set of conditions (the state of the system). 
 
Let us now apply our new insights to a concrete but very difficult problem: the origin of life. 
 
 

15.5 The	  origin	  of	  life*	  

Probably the most fundamental metasystem transition is the origin of life itself. This is still 
absent in Turchin’s sequence. Living beings are self-sustaining organizations with in-built 
adaptivity. This means that they are purposive, with survival or fitness as their fundamental 
goal. To understand how life could emerge, we have to ask ourselves how variation and 
selection could have produced goal-directed or control systems. The following considerations 
are still speculative, but offer a plausible picture of this most mysterious transition of all.  
 
In general, it is assumed that for the most primitive possible organism (a type of rudimentary 
bacterium) three components were needed: 

1. A membrane or cell wall, which protects the system from the environment, but lets in 
food. 

2. A “memory molecule” or “replicator” (such as DNA) that “remembers” the operation 
of the organism and that can be copied (replicated), and in this way passed on to 
descendants, possibly with variations. 

3. An autocatalytic cycle of chemical reactions that uses incoming food molecules to 
produce, repair or reproduce internal components. 

 
Catalysis is a term from chemistry. It refers to the process where a certain type of molecule 
(the catalyst) enables, facilitates or speeds up a chemical reaction between other molecules. 
Autocatalysis then means self-enhancement or self-facilitation. This means that the 
molecules in the cycle stimulate their own production. Autocatalysis is a form of positive 
feedback. The cycle is in fact a very simple form of an organization. It is likely that the first 
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living system had a more complex chemical organization than just a cycle, but we will use 
the cycle as an example to illustrate some of the basic problems. 
 
Examples: 

• A + X → 2A 

A doubles itself in this reaction. This is a cycle because you start and end with A. 

• A + X → B, B + Y → C, C + Z → 2A,  

2A + 2X → 2B, ... → 2C → ... 

This more complex cycle consists of three intermediary steps (involving respectively 
A, B, C), after which we return to the starting point (A), except that we now have a 
double amount. X, Y, Z play the part of the “food molecules” that are being used to 
produce more As, Bs, and Cs.  

 
Scientists do not yet agree which of the three components, membrane, autocatalytic cycle or 
replicator, is the most fundamental, and how, or in which order these components have 
originated. If we consider a living being as a control system, we see that it does not matter in 
which order the components originated, as long as they have been integrated at some point. It 
is for example possible that empty membranes, free “replicators” and autocatalytic cycles (or 
more generally chemical organizations) have developed independently, in parallel. 
Membranes that happened to include a cycle would probably have functioned better, because 
the molecules produced by the cycle helped the membrane to grow, while the membranes in 
turn would have protected the cycle from disturbances. “Replicators” that happened to be part 
of an autocatalytic cycle would have done better for the same reason, while they would have 
stored the operation of the cycle in their “memory”, so that this cycle would have been 
reproduced more easily.  

 

• How	  can	  each	  of	  these	  components	  have	  arisen	  on	  its	  own? 

•  Membrane: certain simple fatty molecules (bilipids) self-organise spontaneously in 
the shape of two-dimensional layers, which close in on themselves and in this way 
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form “cells”. When the number of bilipids increases, these cells can spontaneously 
split in two.  

• Autocatalytic cycle: If the network of reactions is complex enough, and each 
molecule produces one or more new molecules, which in turn produce new 
molecules, etc., a cycle will sooner or later always develop, meaning that one of the 
input molecules appears again as part of the output. The necessity of the appearance 
of such a cycle has been argued by Stuart Kauffman, using computer simulations and 
mathematical reasoning. But the more general emergence of closed reaction networks 
is in fact a rather obvious mechanism, given that organizations are the attractors of 
any sufficiently complex network of chemical reactions.  

Such a cycle is a form of positive feedback, but also of closure, as described in 13.5, 
albeit no longer static, but dynamic. Moreover, as per the definition of catalysis, more 
will now be produced than when the chain was begun. All molecules in the chain are 
therefore increasing in number, as long as there are enough “food” or “fuel” 
molecules present to allow the reaction to continue. 

• Memory molecule: The simplest known type of such a molecule is RNA, a single 
form of the “double helix” of DNA. Relatively simple forms of RNA have been 
found that are capable of reproducing themselves. At the moment, there is not yet a 
concrete scenario for the development of the first RNA, although the components of 
RNA are relatively easy to produce. RNA may have developed as a by-product of an 
autocatalytic cycle, as a more complex form of an originally simpler molecule that no 
longer exists, or (unlikely) directly through combination and selection of its 
components. 

 

15.6 Origin	  of	  control*	  

We are now looking for a scenario that allows a goal-directed, adaptive system to arise 
spontaneously from non-goal-directed components. This means that we will try to explain the 
origin of life using evolutionary and cybernetic principles, rather than the chemical properties 
of molecules and reactions.  
 

• What	  is	  the	  minimum	  we	  need	  for	  a	  control	  system?	  

1. Negative feedback: ensures that perturbations are suppressed and that the system 
returns to equilibrium. 

2. A goal that represents the preferred state: it ensures that the state to which the system 
returns is indeed the fittest one, the one that will lead to long-term survival. 

3. Amplification: the effect of actions is greater than the effect of perturbations. This 
ensures that the suppression is strong enough so that deviations caused by 
disturbances never become large enough to endanger survival. 
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Such a rudimentary control system for a living cell is illustrated above. Note that this diagram 
is equivalent to the general diagram for a control system (5.5), except that the perceptions 
and actions now take place within the system boundary formed by the membrane. The reason 
for this is that most primitive cells do not yet have external sensors or organs with which they 
can interact directly with their environment. They have to wait until the environment itself 
enters the system, and suppress (or possibly reinforce) the effects of this intrusion. 
 
All three “life components” have their own function or role to play in the construction of 
such a control system: 

• memory molecule: storage of the knowledge and goal which direct the autocatalytic 
cycle. This means that they ensure that the right molecules are produced in the given 
circumstances. 

• membrane: buffering, i.e. the passive absorption of disturbances from the 
environment. This weakens the effect of disturbances on the goal, and thus 
contributes to amplification. Moreover, it filters incoming molecules, so that in the 
first place only “good” (food) molecules can enter, and “bad” (toxins) cannot. 

• autocatalytic cycle: production of sufficiently strong actions to compensate for 
disturbances and rebuild damaged components. This also contributes to amplification, 
but requires energy in the form of food.  

 
The autocatalytic cycle is however a positive feedback loop: you end up with more than you 
started with. Without control, such a cycle would lead to a run-away growth. Such growth 
requires the availability of food molecules, though: when these are exhausted, the cycle stops. 
The food molecules in turn depend on what is available in the environment. This makes the 
operation of the cycle very unreliable: depending on availability, it runs either too fast, or it is 
standing still. What we need is a combination of these mechanisms with negative feedback 
and thus control. 
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• Possible	  scenario	  for	  the	  construction	  of	  a	  control	  loop	  from	  the	  components	  

Imagine that one of the “food molecules” necessary to allow an autocatalytic cycle to 
function is not coming from the environment, but from the cell itself. The molecule can then 
limit the speed of the cycle independently from the environment. After all, the cycle cannot 
produce anything without this molecule’s cooperation. The molecule then plays the role of a 
“goal molecule” that controls the cycle. As long as there is more food than goal molecules 
available, the speed of the autocatalytic reaction will depend only on the goal molecule. The 
least available molecule after all restricts the production of all others (it is the bottleneck of 
the process). If this molecule increases in number, the speed increases; if it decreases in 
number, the speed decreases. In this way, a “goal molecule” can completely control the 
reaction. 
 
Now imagine that there are several types or variants of the goal molecules, that each send the 
cycle into another direction, meaning that different molecules will be produced. Then the 
goal molecule does not only have control over the number of molecules that are produced, 
but also over the kinds of molecules. This means that the produced molecules can be adapted 
according to the specific circumstances.  
 
Example: different types of food require the production of different types of “digestive 
enzymes”, and this requires that the goal molecules send the cycle in the right direction to 
produce these enzymes.  
 
Such adaptivity can be achieved by having goal molecules produced by a separate 
autocatalytic cycle that is influenced by what is happening in the environment. Such a cycle 
that controls one or more other cycles is called a hypercycle (a concept introduced by 
molecular biologist Manfred Eigen). The development of a hypercycle is an example of a 
metasystem transition. Once such a hypercycle has emerged, we get an organisation similar 
to the one in a living cell.  
 
Example: In a cell, certain pieces of DNA are “activated” by other molecules (under 
influence of the environment). The activated DNA produces specific RNA molecules. The 
RNA molecules catalyse or direct specific reactions, adapted to the circumstances. 
 
 

15.7 Competition	  and	  Cooperation	  

We have argued that within an organization (such as the first living organisms) the different 
agents work in a coordinated or synergetic way. They are thus implicitly cooperating towards 
maintaining and growing the organization. This is possible because the different agents 
complement each other: the one produces the resources that the other one needs. That 
assumes that agents have different needs (for resources to consume) and capabilities (for 
resources to produce). For example, plants and animals complement each other, because 
plants convert carbon dioxide into oxygen, while animals convert oxygen back into carbon 
dioxide. Thus, the plants can thrive on the resources produced by the animals, and vice versa.  
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• The	  tragedy	  of	  the	  commons	  

Cooperation is much more difficult to evolve when the agents are similar, for example 
because they are all individuals belonging to the same species. Having similar needs means 
that they will compete for the same resources. Having similar capabilities means that they 
will not be able to compensate for the lacking capabilities of the others. If such similar agents 
share a common environment, they will tend to compete for the resources available in that 
environment. Since resources are in general finite, while the number of agents can grow 
without limit, this may lead to the exhaustion of the resource, and therefore to the elimination 
of the agents depending on that resource.  
 
In such a case, it seems logical that the agents would limit their resource consumption. 
However, evolutionary competition makes this very difficult. The problem can be explained 
through the so-called “tragedy of the commons” situation. Imagine a group of agents (e.g. 
rabbits) who all have access to a common resource (e.g. a field full of grass). Suppose the 
grass grows quickly enough to sustain a population of 1000 rabbits. The “logical” approach 
would be that each rabbit family would limit its number of offspring in such a way that there 
would never be more than 1000 rabbits, so that all can survive safely. This would be a way 
for the rabbits to cooperatively manage their common resource.  
 
However, assume that some rabbit families would ignore that limit and reproduce more 
quickly. This would hurt all rabbits, including those who limit their family size. But the ones 
who do not obey the restriction will still grow in number, and thus eventually overtake the 
cooperators. Such individuals who do not care about the common good are called free riders 
because they selfishly profit from the investment of the others. The name is inspired by 
people who do not pay for the public transport and thus get a “free ride” at the expense of 
those who do pay.  
 
The tragedy of the commons is that free riders will eventually overtake the cooperators, and 
thus destroy the common resource. The tragedy of the commons can be seen as a more 
general, many-agents version of the two-agent interaction that we called the Prisoners’ 
Dilemma. In the Prisoners’ Dilemma, agents can be either cooperators or defectors 
(equivalent to free riders). The “tragedy” here is that while the strategy of cooperation is the 
best for everyone, the defectors make the biggest gain in the short term, and therefore may 
overtake the cooperators. 
 
The appearance of free riders or defectors is actually a to be expected outcome of evolution 
by natural selection. There is always competition for scarce resources. Not every individual 
can be successful, so only the fittest are selected, independently of the others. Helping others 
in general does not contribute to one’s own survival. On the contrary, it costs energy or 
effort, while it will in the first place benefit a competitor, who after all needs the same 
resources. This is why natural selection will initially produce selfish or egoistic individuals, 
who only stand up for themselves.  
 

• The	  evolution	  of	  altruism	  

The opposite of selfishness is altruism, meaning behaviour that benefits others rather than 
oneself. An example is jumping into the water to save someone who is drowning, at a danger 
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to one’s own life. The problem then is: how can altruism, which undeniably exists among 
both humans and animals, have evolved?  
 
One obvious solution is group selection: a group in which the members help each other will 
in general survive better. For example, wolves that cooperate can kill much bigger prey (e.g. 
elk), than if they would hunt alone. Similarly, the rabbits that cooperatively limit their 
population size would do better in the long term. For this reason, altruism within a group 
benefits its members. This is why there will be a selection of groups consisting of altruists, at 
the expense of groups with only selfish individuals.  
 
However, there is a fundamental problem with this mechanism: selfish individuals within an 
altruist group receive more benefit from altruism than the altruists do. They let others do the 
dirty or risky work; they do not contribute to the costs, but they do reap the rewards. An 
example are the free riders who do not pay for the subway, and thus profit from others’ 
contributions to maintain the public transport system. In this way, the selfish ones within an 
altruist group will be fittest. In this way, the tendency towards altruistic behaviour will be 
selected against in the long run.  
 
So how can altruism, cooperation or morality evolve? Sociobiologists have suggested two 
fundamental solutions for this problem:  

• Kin selection: selection based on kinship or blood ties. Helping family members, 
especially one’s own offspring, benefits one’s own genes. A gene for “nepotism” 
(favouring family) will therefore be selected for. This explains among other things 
the care of parents for children, and the solidarity between siblings, but also the very 
complex cooperation in insect colonies.  All bees, ants, etc. in the colony are after all 
descendants of a single “queen”, so that everyone is closely related to everyone.  

• Reciprocal altruism: the tit-for-tat strategy (see 6.7): I help you on the condition that 
you later help me; if you do not return the favour, I will stop helping you. This 
explains for example the solidarity between vampire bats (see 2.3). To allow this to 
succeed you need trust in others, and this requires familiarity with one another. This 
is difficult in large groups in which you know only a few people, so that you cannot 
build up a relation of trust. For example, a shopkeeper can easily deceive tourists, 
because these will most likely not return to the same shop.   

 
These mechanisms are however not sufficient as explanation for the very sophisticated and 
extended solidarity and cooperation in human society. We will therefore not only need to 
study the evolution of morality as a biological phenomenon, but also as a cultural 
phenomenon.  
 

• The	  cultural	  evolution	  of	  morality	  

Not only genes, but also memes (ideas, norms, traditions) are subject to evolution. This in 
general leads to a conformist distribution within a group. If someone has a good idea, it is 
advantageous to copy that (cf. 6.8). Mutual altruism is a good idea and will thus be imitated 
more and more. The more people do something, the more that behaviour is imitated. 
Eventually, everyone in the group will exhibit the behaviour (conformism), and no one will 
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be able to evade that conformist pressure. Consequently, selfish individuals are sidelined, 
because they can no longer profit from the efforts of others.  
 
This then causes cultural group selection. If everyone is (mutually) altruistic, one-to-one 
reciprocity is no longer needed to keep out cheaters or free riders. The idea that remains is 
altruism towards everyone in the group. However, different groups with different forms of 
mutual help and solidarity now enter into competition with each other. Those with the best 
cooperative system will be most successful. As a result, their system will eventually be 
adopted by the less successful groups. In the end, everyone will have a similar morality.  
 
Note that not all rules of such an evolved morality will effectively be advantageous. Natural 
selection only eliminates “bad” ideas, such as human sacrifice, that decrease the fitness of the 
group. Neutral or irrelevant ideas tend to persist. Rules that “happened” to work well, for 
example, not eating pork (Islam) or beef (Hinduism), will continue to be obeyed even when 
they no longer have a function, because of conformist pressure making it impossible to 
deviate from them. This evolution in general leads to complicated systems of gods, precepts 
and traditions in different cultures. Moreover, the ideas that used to work well in the past do 
not necessarily still apply to the present. The environment has after all changed. The 
mechanism of conformism is conservative: it is very difficult to initiate a new idea that goes 
against established ideas. This is why morality cannot be based on tradition alone—although 
tradition does offer a useful starting point, because the traditional rules have undergone an 
extended selection that has eliminated rules that significantly decreased fitness.  
 

• Division	  of	  labour	  and	  institutions	  

While morality tends to focus on rules that apply to everybody in the same way, there is 
another strategy to reduce conflict and boost cooperation: increase differentiation between 
the agents. We saw that coordinated, synergetic organization spontaneously evolves when the 
agents are complementary in their needs and abilities. The more different the needs and 
abilities, the less pressure for competition and the more room for cooperation. This creates a 
selective pressure for differentiation. Ecosystems function so well because they consist of a 
great diversity of species that each consume and produce resources differently, thus covering 
many different niches. Economic systems similarly thrive because of the division of labour: 
different people and companies specialize in providing different goods and services.  
 
Diversity alone is not sufficient, though: you need to evolve a system of rules for reliably 
coordinating the different activities. E.g. in an economy there needs to be a reliable system 
for exchanging goods and services. This is achieved in specific social organizations, such as 
companies, or government agencies, that have their own rules about who does what for 
whom. The rules that evolved for regulating the whole of society are called institutions. They 
include such conventional arrangements like money, markets, property rights, traffic rules, 
and laws. 
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Chapter	  16. Conclusion:	   the	   evolutionary-systemic	  
worldview	  

16.1 Ontology	  

We will now summarise the philosophical implications of the previous chapters in order to 
survey the overarching evolutionary-systemic worldview (ESW). Every philosophical 
system is based on an ontology. This answers the questions “what is?”, “which are the 
fundamental categories of existence?” 
 
In the ESW, the fundamental components are relational: distinctions and connections, and the 
actions they define. Distinctions and connections are the building blocks for more complex 
structures or forms of organisation: systems. In the simplest case, a network of (re)actions 
will automatically stabilize into a self-sustaining organization, which defines a stable system. 
More complex systems arise spontaneously (self-organisation) through variation and 
selection of combinations between simpler component systems. Initially, we only see simple 
systems, out of which more complex systems evolve gradually. Systems are selected for their 
fitness: the ability to survive and be produced or reproduced. Fitness can be reached through: 
1) stability (internal); 2) adaptedness (external); 3) adaptivity. 
 
Once a certain degree of complexity is reached, systems can develop goal-directedness. They 
are no longer passively subjected to their environment, but autonomously aim for their own 
goals, by intervening in the environment if necessary. Goal-directed systems have adaptivity: 
if the environment changes, they can adapt immediately, without having to wait for evolution 
to generate a new design. In order to be able to do this, they need knowledge: instead of 
having to apply blind variation (trial and error), they “know” what to do in given 
circumstances. 
 
Systems form different hierarchies of complexity, with the system at each higher level more 
complex than the one at the lower level: 

• Supersystems (static): atoms, molecules, rocks, planets, etc. Supersystems consist of 
different components or subsystems (distinctions) kept together by connections 
(constraint). 

• Metasystems (dynamic, goal-directed): living beings, minds, society, ... Metasystems 
consist of a control mechanism that coordinates one or more object systems while 
directing them at a certain goal. For metasystems that have developed through 
evolution, the ultimate goal (highest metalevel) is always fitness. Goals on lower 
levels are subordinate or instrumental and can vary widely based on survival strategy, 
system, environment and circumstances.  

 

16.2 Epistemology	  

Epistemology is the branch of philosophy that is concerned with knowledge and that 
wonders how “true” knowledge can be distinguished from “false” knowledge.  
 



151 
 

According to the ESW, knowledge is a product of evolution: it does not come from an 
abstract realm of “Ideas” as Plato thought (idealism), but neither is it the result of a mere 
passive observation of the environment (empiricism) that produces an objective 
representation or reflection of reality (naive realism).  
 
Knowledge arises through blind variation and selection of potential knowledge structures. 
Knowledge must be constructed by the system itself, by trying out various possible rules or 
combinations of rules, and seeing what works. The environment here plays the role of 
selector (selectionism), which eliminates or penalises bad rules, but does not tell the system 
what the good rules would be. The system receives no instructions from the environment, the 
way pupils are instructed by their teacher. It is responsible for the construction of its own 
knowledge (constructivism). 
 
Example: 
 
Imagine a small ocean-living organism, which, in order to survive, needs to stay within the 
right temperature zone. It can achieve this by moving up to warmer or down to colder water 
layers. The organism distinguishes three conditions or states of the World:  
 
 W = {too cold, exactly right, too warm}  
 
It can perform three Actions:  
 
 A = {go up, go down, stand still}.  
 
The knowledge structure of the organism consists of a function or set of rules that maps each 
of the elements of the set W onto an element of the set A:  
 
 f: A → W.  
 
There are 33 = 27 possible combinations of such rules, but the only really fit one consists of 
the rules too warm → go down, too cold → go up, and just right → stand still. All other 26 
combinations (e.g. too warm → go up, too cold → stand still and just right → go down) will 
sooner or later get the organism in trouble. Therefore, they will be eliminated by natural 
selection. There is therefore a probability of 1 in 27 that the organism will find the correct 
combination through blind variation of possible combinations.  
 
More realistic organisms on the other hand have thousands of possible perceptions and 
thousands of possible actions. These can be evolved step by step, by adding conditions, 
actions and rules. These internal rules play the part of selectors, which take the place of 
natural selection by the environment. The evolutionary epistemologist Donald T. Campbell 
calls these vicarious selectors. These internal selectors themselves, however, have developed 
through blind variation and selection. The development of such a selector is an example of a 
metasystem transition. Thus, vicarious selectors will be organised in a control hierarchy, with 
the higher levels varying and selecting the lower ones.  
 
Knowledge is not an objective reflection of the environment, but a tool for control. This 
means that knowledge helps a system to attain its own, subjective goals. Knowledge selects 
for the right actions (or rules for actions) before selection by the environment gets the chance 
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to eliminate a system. Different systems with different goals or different strategies to adapt 
will therefore have different forms of knowledge, even if they live in the same environment.  
 

16.3 Ethics	  

Moral philosophy or ethics is the branch of philosophy that is concerned with the behavioural 
rules that we need to follow to constructively live in a group, without harming others. As we 
have already alluded to several times (2.3, 6.7, 15.7), the theory of evolution offers a 
profound explanation for why such rules are necessary, and how they have developed. We 
have to remember, though, that the moral rules that have evolved in culture are to some 
degree arbitrary, and therefore can only in part be relied upon. Moreover, no rule can be 
absolute, or applicable to all cases: the world is too complex for simple, deterministic rules. 
 
The problem remains how we can found a system of ethics on a more scientific basis. How 
can we optimally coordinate the fitness of the components (individuals) and the whole 
(group, society, ecosystem)? This problem is not trivial, because what is best for a subsystem 
is not necessarily best for the system as a whole—which after all has emergent properties. 
For the world as a whole it is for example better that all cars would be electric, so that they 
would not produce greenhouse gases. For me personally, however, it is better not to buy an 
electric car, because that is much more expensive without having direct benefit for me. An 
effective system of ethics should suppress the temptation to become such a “free rider”, who 
profits from the system as a whole but without investing anything in return, thus tempting 
others away from their cooperative, system-supporting activity. 
 
We need a thorough evolutionary-systemic analysis to reconcile the values of the individual 
or subgroups as best as possible with the values of the society as a whole. This could for 
example be based on seeing society as a huge organization whose components need to 
mutually adapt so as to produce maximum synergy and minimum friction. Such an analysis 
will hopefully allow us to develop a morality that not only benefits as many people as 
possible, but that is also easily realised in practice, without requiring too many heavy-handed 
control mechanisms, such as police, courts of justice, and prison sentences to punish 
offenders. 
 

16.4 Answers	  to	  the	  fundamental	  questions	  

Let us conclude this book by summarising the ESW in the form of answers to the main 
existential questions that all worldviews should address (1.1). The answers here are 
necessarily short and simplified, but together with the previous concepts and principles, they 
hopefully offer an acceptable view of our place in the cosmos. 
 

• Why	  is	  the	  world	  the	  way	  it	  is?	  

The present state of the universe is partly the result of accident (because variation is 
intrinsically unpredictable), partly the result of rationally understandable regularities (because 
the concept of “fitness” and its derivatives, such as closure, allows us to a certain extent to 
predict which variations will be selected). 
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• Where	  does	  the	  world	  come	  from?	  

Although many details still need to be filled in, evolutionary principles and concrete 
observations allow us in principle to reconstruct how all fundamental systems have evolved 
one by one from previous, simpler ones: Big Bang, elementary particles, atoms, molecules, 
stars, planets, cells, multicellular organisms, animals, humans, society, culture... The field 
investigating this development is known as “Big History”. 
 

• Where	  do	  we	  come	  from?	  

Humans evolved from animals that had the capacity to learn, by undergoing yet another 
metasystem transition to the level of thinking. All details of this transition are not yet known, 
but it probably has to do with the origin of a grammar-based language among chimpanzee-
like proto-humans. Chimpanzees and their relatives (bonobos, gorillas) exhibit a great 
similarity with humans in fundamental biological, social and even mental aspects, including 
the use of tools, primitive language and culture.  
 
One or several accidental factors (such as a climate change that transformed the rain forest to 
a savannah) probably caused initially small lifestyle changes (such as walking upright, thus 
keeping hands free to use tools, and switching from a mainly plant-based diet to a more meat-
based diet, thus providing the extra energy needed to support a larger brain) that suddenly 
sped up the evolution of tool use, language and culture. The more complex language and 
culture led to selection for higher intelligence (and thus a larger brain) in individuals. This 
increasing intelligence in turn stimulated the further complexification of language and 
culture. In this way, cultural evolution and brain evolution boosted each other in a positive 
feedback loop.  
 

• Who	  are	  we?	  

At the moment, humans exhibit the highest metasystem level. This gives them unprecedented 
power and insight relative to other organisms, and unique properties such as imagination, 
creativity, abstract thought, self-awareness, etc. However, they still have plenty of the 
limitations that they have inherited from their ancestors, such as aggression, faulty reasoning, 
jealousy, chronic stress reactions, etc. These reactions may have been adapted to the 
environment of our ancestors, but in our current environment they are rather 
counterproductive. A better understanding of evolution will allow us to become more 
conscious of these limitations and in that way to deal with them better. This is being studied 
in disciplines such as evolutionary psychology and Darwinian medicine. 
 

• Where	  are	  we	  going?	  

The ever-faster evolution of science, technology and culture appears to herald a new 
metasystem transition. This will lead to a system with as yet unpredictable capacities for 
adaptation, creativity, thought, consciousness and action. Probably the best metaphor for this 
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is the “global brain”, the thinking system that arises through the integration of all individuals 
on this planet via an intelligent computer network.  
 

• Who	  am	  I?	  

Each individual is a unique combination of genes (except for identical twins) and 
experiences. Although the variety of the number of possible human individuals is infinite, it 
is not unlimited: there certainly are forms that are “unviable” or “inhuman”. This means that 
the variation between people obeys certain constraints. It is thus possible to define an infinite 
“state space” of possible personality types, in which everyone can recognise their own, 
unique, properties.  
 
Psychologists have used a large-scale statistical analysis to already determine a space with 
five fundamental personality dimensions, the “big five”. They are:  
 

• introversion—extraversion,  
• emotionality—stability,  
• openness—conservatism,  
• agreeableness—disagreeableness,  
• conscientiousness—impulsivity.  

 
Each has an evolutionary meaning which in itself is neither good nor bad, but of which the 
fitness depends on the environment (for example, “open” personalities will aim to gain more 
experiences, but will therefore also run more risk in dangerous environments; agreeable 
characters will fit better in an cooperative group, but will be taken advantage of in a selfish 
group). 
 

• Where	  am	  I	  going?	  	  

Every individual will sooner or later find their own niche, suitable to their unique personality. 
This means that people during their development will make different choices about their 
education, hometown, partner, friends, profession, ... until they, through trial and error, reach 
a situation in which they feel good. Psychological research shows that the eventual niche 
depends to an important degree on genetic background: identical twins that were separated at 
birth and thus have been raised in different ways, still tend to resemble each other in their life 
choices: independently of each other, they often end up in a similar career (such as secretary 
or fireman).  
 
The better you get to know your own personality, the easier it will be to find a suitable niche 
and develop yourself further. Thus, an introvert-stable-conservative-conscientious character 
will probably be happy as an accountant, while an extravert-emotional-open-impulsive 
character will rather have a career as a rock singer or actor, and an introvert-emotional-open-
conscientious character as painter or poet. 
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• Is	  there	  an	  ultimate	  goal?	  

No, evolution does not aim for a final goal, as postulated by the evolutionary theologian 
Teilhard de Chardin, who called it the Omega Point. Evolution will never be finished. 
Although evolution produces goal-directed systems, it is itself not goal-directed. Evolution 
remains intrinsically unpredictable. Still, this evolution is not random, but has a preferred 
direction: the increase of fitness.  
 

• Should	  we	  believe	  in	  God?	  

From an evolutionary viewpoint, an explanation leading back to some individual Creator who 
rules the universe is not only superfluous, but misleading rather than enlightening. If you 
wish, however, you can see the process of evolution itself, or the universe that was produced 
by it, as “godly”, in the spirit of pantheism. In that sense, you can have spiritual or religious 
feelings, without believing in a personal God. These include: 
 

• connectedness to the larger whole,  
• readiness to transcend your personal, self-centred perspective 
• mindfulness, or awareness of the infinite richness and subtlety of the 

phenomena that surround you 
• awe in the face of the unimaginable complexity of the universe, 
• fascination for the mystery of everything that is still unexplained,  
• inspiration drawn from the “Big History” narrative of the universe’s evolution 
• faith in the power of evolution to always find creative solutions 

 
The philosopher Leo Apostel called such an attitude “atheistic religiosity” or “atheistic 
spirituality”.  
 

• What	  are	  good	  and	  evil?	  

There is no absolute good or absolute evil: what is good in certain circumstances (for 
example having sex with someone you love), can be bad in others (for example having 
unprotected sex with someone you do not know). There are no absolute laws, neither natural 
nor divine, from which you can deduce universal criteria that unambiguously separate good 
from bad. It is always the individual that needs to make a specific choice in a specific 
situation.  
 
There are however evolutionary values that can guide us in these decisions. Choices are thus 
not purely subjective or random. From the basic value of fitness, some more concrete, 
general values can be deduced: 

• stability, sustainability, robustness, resilience: aim to make your choices durable by 
creating systems that can withstand a variety of disturbances and that do not exhaust 
the resources they need 

• variation, innovation, exploration, experimentation: dare to go beyond what you 
already know, and try out new things 



156 
 

• diversity, variety: be aware that a system with more diversity is also more adaptive, 
robust and creative 

• autonomy, self-organisation: do not try to direct or control other individuals or 
systems; it is much more efficient to let them find their own way (at least insofar that 
the results do not endanger yourself) 

• adaptation, integration: take into account that no individual or system can exist on its 
own; it always need to fit into the larger whole that forms its environment. 

• cooperation, coordination, synergy: search for win-win or positive-sum interactions 
from which all parties benefit; avoid as much as possible conflict or friction 

• efficiency, reduction of friction: take into account that energy and resources tend to 
dissipate, and therefore become unusable; design systems in such a way that this 
waste is minimized 

 
Specifically for goal-directed systems, and therefore also for human individuals and societies, 
we can note some additional values: 

• insight in own goals or preferences: try to understand what is really important or 
valuable for you 

• control, management of one’s own situation: develop the capability to deal with any 
disturbances that might drive you away from your goals  

• reserves, buffers: make sure that you have enough resources to absorb unexpected 
fluctuations 

• sensitivity, perception, mindfulness: develop your awareness of the different 
phenomena that may signal dangers or opportunities, even when these are still 
difficult to observe 

• knowledge, intelligence: develop the capability to interpret the phenomena you sense, 
to infer their implications, and to devise appropriate plans to deal with them 

• power, energy: make sure you have the physical capacity to act on the problems you 
sense 

 

• What	  is	  true	  and	  what	  is	  false?	  

There are no absolute truths. The “truth” of a theory or model is nothing more than its ability 
to make predictions that are confirmed in practice. Two different theories can however make 
similar predictions without the one being true and the other false. These theories can be 
compared with two systems that have adapted in different ways to the same reality. Both are 
equally fit, but they can be very differently organised.  
 
Truth is however not only relative, subjective or culture-dependent. There is definitely a 
difference between a theory that makes reliable predictions (e.g. astronomy), and a theory 
that does not (e.g. astrology). Of two systems that compete for the same niche, the one will in 
general be more fit than the other, and there are certainly objective differences, advantages or 
disadvantages. These enable elimination (“falsification”) of bad theories. Therefore, we 
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should remain both open-minded, to give new ideas a chance, and critical, ready to abandon 
ideas that have been shown to function poorly. 
 

• Why	  do	  we	  die?	  

Biological fitness is reached through a combination of different strategies. Every living 
system has a finite amount of energy to invest in fitness. What is used for the one (for 
example reproduction), is no longer available for the other (for example survival) (see 11.3). 
Therefore, there is a trade-off between survival (K-strategy) and reproduction (r-strategy). 
Since it is impossible to guarantee survival in every situation (because of for example 
accidents, illness, predators ...) sufficient energy has to be invested in reproduction to 
compensate for the inevitable loss of lives. This is why our organism will not invest 
maximally in survival in the long term. The result is aging and decline when the fertile period 
of reproduction is over. This evolutionary explanation for aging is the theory of the 
disposable soma (disposable body): it is most important that our genes live on in our 
descendants; our individual organism (“soma”) is secondary and can be sacrificed.  
 

• How	  can	  we	  be	  happy?	  

Happiness, meaning positive feelings or subjective wellbeing, is the biologically evolved 
signal that all is well, that the organism can continue like this. This means that the organism 
is fit, and able to cope with all practically foreseeable problems. In other words, that the 
organism has control over its situation and can attain its goals. It is not so much the external, 
objective situation that produces happiness, but the perception or the feeling that one has 
control over the situation, that one makes progress towards one’s goals, and that there are no 
insurmountable problems. This explains why so many people who appear to have everything 
needed to be happy, still can be depressed or even commit suicide. 
 
Over the long term, however, happiness requires a number of objective basic conditions: 
health, knowledge, social participation (personal relationships, being accepted within a 
group), freedom (making your own choices), equality (not being discriminated against), 
prosperity, and safety (low risk of accidents, crime, war, ...). That these factors contribute to 
happiness has been shown through a very extensive body of empirical research (as collected 
in Ruut Veenhoven’s World Database of Happiness). 
 
These conditions can however also be theoretically deduced from the general evolutionary-
systemic values above, and the specific features of humans as social animals. Health 
indicates for example internal fitness, safety the absence of too strong perturbations, and 
prosperity the presence of all required resources. For their part, freedom and equality indicate 
the absence of suppression by dominant individuals or subgroups, and participation indicates 
cooperation with and support from others. 
 

• What	  is	  the	  meaning	  of	  life?	  

“Mother, what are we living for?” The essence of the ESW can be summarised in one phrase: 
the meaning of life is striving for fitness. Fitness is the implicit goal of all systems. In 
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practice, however, we still do not know what the best way is to increase fitness for a given 
system. Fitness itself is a very abstract, complex and multidimensional concept. There are a 
large variety of ways to increase fitness that depend on both the system and its environment. 
Therefore, individuals still need to make their own choices, depending on their specific 
situation. But the ESW undoubtedly offers us a collection of useful guidelines.  
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