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Abstract. The world is confronted with a variety of interdependent problems, including scarcity, 
unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires 
coordinated action. The present paper proposes the development of a self-organizing system for 
coordination, called an “offer network”, that would use the distributed intelligence of the Internet to 
match the offers and needs of all human, technological and natural agents on the planet. This would 
maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination 
requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules 
or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks 
in which each consumed resource (need) is also produced (offer). After sketching the elements of a 
mathematical foundation for offer networks, the paper proposes a roadmap for their practical 
implementation. This includes step-by-step integration with technologies such as the Semantic Web, 
ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, 
governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent 
platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed 
manner, thus functioning like a Global Brain for humanity. 

 

1. Introduction 
 
Our society is confronted with a variety of deep and widespread problems. These include 
poverty, inequality, instability, waste, pollution, unsustainability, conflict over scarce 
resources, and ineffective governance. At the same time, technology—and information 
technology in particular—proposes a range of powerful tools for tackling such problems. It 
thus promises a world of abundance in which all human needs are satisfied (Diamandis & 
Kotler, 2012; Drexler, 2013; Rifkin, 2014). The difficulty, however, is how to get from the 
present situation to this envisioned utopia.  
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 This difficulty is perhaps best captured by the VUCA acronym: the situation is Volatile, 
Uncertain, Complex and Ambiguous (Beigi, 2014; Bennett & Lemoine, 2014). It is volatile in 
the sense that technology has accelerated all developments (Heylighen, 2008), positive as well 
as negative: both new threats and new opportunities appear and propagate at an 
unprecedented rate. It is uncertain because no one can say which of these new challenges will 
have a big impact, and which will merely dissipate as quickly as they appeared. It is complex 
because all these challenges interact with each other, so that they cannot be understood in 
isolation. Finally, it is ambiguous because no one really knows what the precise meaning or 
value of these various developments is.  
 Up to now, the promises of technology have tended to be piecemeal: some new 
solution (e.g. genetic modification of mosquitoes) is proposed to tackle a particular challenge 
(e.g. stop mosquitoes from transmitting malaria). But this is just a tiny part of the overall 
problem. Moreover, because of the complex interactions between challenges, an intervention 
in any one may create new ones elsewhere (e.g. the genetically modified mosquitoes may 
upset the ecosystem in which they are released). What we need is a method for tackling all 
challenges together, in a coordinated manner. However, because of the VUCA nature of the 
situation, it seems impossible to formulate an overall plan that would tackle all the world’s 
problems simultaneously.  
 Nevertheless, it is possible to coordinate activities without a plan. Stigmergy is a 
method of coordination used by social insects, such as ants or termites (Heylighen, 2016a; 
Parunak, 2006; Theraulaz & Bonabeau, 1999). It allows them to efficiently collect food or 
construct complex nests without any centralized command or control. The coordination self-
organizes because the partially finished work of some individuals signals to the others what to 
do next. This indirect information exchange is made possible by a shared medium. The traces 
left on the medium by the agents can be interpreted as either partial solutions (this is already 
available) or remaining problems (this still needs to be done), thus efficiently directing the 
further activity. The resulting coordination explains the impressive collective intelligence 
exhibited by swarms of insects whose individual intelligence is very limited (Bonabeau, 2009; 
Heylighen, 1999). 
 The Internet provides an amazingly powerful medium for the coordination of actions, 
as it allows the registration, storage and propagation of any information, to be shared between 
any human or technological agents (e.g. robots, sensors, or software). In principle, it could be 
used to locate and alert the agents most competent to solve a problem the moment it arises, 
and to ensure that a heterogeneous group of agents collaborate efficiently on a common 
project. Thousands of applications, websites and platforms have arisen over the past decades 
to support such coordinated activity, from email via forums, wikis, social media and online 
markets to community sharing and crowdsourcing. Its most impressive applications, such as 
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the collaboratively authored Wikipedia encyclopedia, have successfully applied the principles 
of stigmergy (Heylighen, 2007).  
 Several authors have proposed that these local forms of Internet-supported collective 
intelligence will eventually coalesce into one planet-wide superintelligence: the Global Brain 
(Bernstein, Klein, & Malone, 2012; De Rosnay, 2000; Goertzel, 2002; Heylighen, 2008, 
2011; Mayer-Kress & Barczys, 1995). Such a Global Brain would at last have the capabilities 
to deal with the immensely complicated and wicked problems of the VUCA world. Thus, it 
would be able to realize the world of abundance promised by technological visionaries 
(Heylighen, 2015). 
 Yet, the question remains how we get from here to there. The present amalgam of 
coordinating platforms is itself everything but coordinated, as they all use different protocols, 
paradigms, and interfaces, while addressing different communities and different types of 
problems (Heylighen, 2016b). The situation is similar to the one before the advent of the 
Internet in the 1980’s, when there was a proliferation of local area networks, bulletin board 
systems, commercial providers and academic networks. The introduction of the very robust 
and flexible TCP/IP protocol made it possible to interconnect and eventually subsume all 
these local computer networks into the global Internet.  
 The present paper wishes to formulate the logic behind an envisaged new protocol, 
provisionally called “offer networks” (Goertzel, 2015; Heylighen, 2016b). This protocol 
would do for the Global Brain what TCP/IP did for the Internet, and HTML/HTTP for the 
World-Wide Web: define a universal standard that makes the hodgepodge of existing systems 
interoperable, so that they can merge into a system much larger and more effective than the 
sum of its parts. This protocol would enable efficient coordination between all agents and all 
activities on the planet, and thus support a distributed intelligence that should eventually be 
able to solve all major problems of our time. 
 Next to a formal foundation for such a protocol, the paper will sketch a first roadmap 
for implementing the corresponding coordination platform. This roadmap will survey the 
different steps that are to be performed in order to build such a system. As more steps are 
made, the effectiveness of the platform will increase, until it may eventually reach the level of 
intelligence of a true Global Brain. It is of course very difficult to predict which social and 
technological obstacles or innovations may or may not appear on the road to a Global Brain. 
Therefore, this roadmap should of course not be taken as a detailed scenario for what will 
happen when. Its intention is merely to bridge the gap between the present situation and the 
envisaged Global Brain organization, by listing a number of concrete and realistic steps that 
are likely to get us from here to there. Thus, it is intended to convince the reader that the 
Global Brain scenario is ready to be transformed from a utopian vision (Heylighen, 2002, 
2015) into a practically realizable project. 
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2. Distributed Intelligence and the complexity of value 
 
The concept underlying both the offer network protocol and the Global Brain is that of 
distributed intelligence (Heylighen, 2014, 2016c). Intelligence is traditionally conceived as 
the ability to solve specific problems. We will here define it more generally as the ability to 
recognize and tackle challenges. A challenge is defined as an aspect of a situation that carries 
potential value. A challenge can be a problem to be solved (negative value) or an opportunity 
to be exploited (positive value), or some combination. Recognizing challenges requires 
gathering information about the situation and processing that information in order to make 
sense of it: in which respects does it signal a meaningful opportunity (potential value) and/or 
a problem (potential loss of value)? Thus, our concept of information is pragmatic (Gernert, 
2006) rather than syntactic or semantic.  
 The more diverse and the more complex the challenges a system can tackle, the more 
intelligent it is. Tackling challenges requires selecting and performing an appropriate 
combination of actions. Performing these actions provides the system with benefit relative to 
not performing them. Thus, the ultimate measure of intelligence is the amount of benefit or 
value that the system can obtain by effectively dealing with the challenges it encounters.  
 Intelligence is distributed when different parts of this process of challenge tackling are 
performed by different agents. For example, intelligence in the human brain is distributed, 
because the processing and interpretation of incoming information and the formulation of 
strategies for dealing with the perceived challenges are performed collaboratively by a myriad 
of neurons residing in different brain regions (Rumelhart & McClelland, 1986). No neuron or 
brain module is in control of the process; the process is fully decentralized and parallel. 
 Distributed problem-solving is even more obvious in society. Groups, organizations, 
and societies can perform incredible feats, such as putting a human on the moon, that no 
single individual would ever be able to achieve. This distributed intelligence is supported by 
the division of labor: different individuals have complementary skills, which they bring to 
bear on a common problem. But it is not just knowledge and ability that are distributed...  
 
 
2.1. The complexity of value 

Tackling challenges requires sensing the different aspects of a challenge. This is typically 
performed by different people, often supported by instruments. It requires not just gathering 
information about the situation, but interpreting that information in terms of value: what does 
it mean? In how far are its implications positive or negative? Is there a resource to be 
exploited or a danger to be evaded? This sense-making and valuing ability is distributed as 
well, since different individuals have different perspectives, preferences and needs, and what 
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one may take for granted (e.g. having a variety of clothes, or being able to read) another may 
experience as a major deficiency.  
 In the brain too, valuing is distributed across a variety of neurophysiological systems. 
These include various receptors for pain, pleasure, pressure and heat, triggers for anger and 
fear in the amygdala, “feelgood” neurotransmitters such as endorphins, dopamine and 
serotonin, and the cognitive representation of moral values in the neocortex. The complex 
character of value is illustrated by the fact that we typically only become aware of how 
valuable something is (say, warm clothing) when we miss it, and by the fact that we tend to 
overestimate the value of something we desire (say, a new car), with the result that we often 
are disappointed when we get it.  
 The complexity of value (LessWrong, 2013; Muehlhauser & Helm, 2012; Yudkowsky, 
2011) is a fundamental problem that is typically overlooked in the attempts to build an 
Artificial General Intelligence (AGI). An AGI is a software agent that would be able to decide 
and act autonomously in any situation, just like a human being. The standard assumption in 
AGI research, economics, and decision-making is that value can be represented as a utility 
function. Such function maps every situation onto a real number that measures how valuable 
it is to the agent. The agent would then decide what to do simply by calculating the expected 
utility of the different options, and selecting the one with the highest value. Its intelligence 
could then be defined as the degree to which it manages to maximize utility.  
 However, the number of possible situations and their potentially relevant aspects is 
infinite, and these aspects interact and evolve in an unpredictable manner. Therefore, a 
realistic goal system or utility function would be so complex as to be non-computable (Ashby, 
1972; Heylighen, 2015). Moreover, as the examples above illustrate, in practice values are 
volatile, uncertain, complex and ambiguous, changing with previous experience (e.g. the 
value of food diminishes after a copious meal), the agent, and the situation. Therefore, a 
general utility function cannot even be defined, because the same thing will have one value in 
one context, and a different value in another context. This means that a true intelligence, 
which would make sense of its situation and dependably create value, must be open-ended, 
constantly adapting its preferences to a changing world, rather than having preprogrammed 
goals (Weinbaum & Veitas, 2016).  
 The problem of defining a universal value function (Ashby, 1972; Yudkowsky, 2011) 
does not arise in distributed intelligence, because no centralized decisions have to be made. 
Different local decisions are made depending on the subjective needs of the local agents, who 
know best what is most valuable in their specific situation. If their choice turns out to be 
unsatisfactory, they will simply express a new, updated need, which can again be tackled by 
the distributed intelligence. The only requirement for the system to work efficiently is that the 
different challenges and the actions performed to address them are coordinated, so that they 
result in cooperation or synergy rather than conflict (Heylighen, 2013). In other words, the 
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sum of all value produced for all agents should be as much as possible positive (synergy), 
rather than zero (competition) or negative (conflict or friction) (Heylighen, 2008; Heylighen 
& Campbell, 1995; Wright, 2001). 
 
 
2.2. Creating synergy 

We now come to the principle of an offer network (Goertzel, 2015; Heylighen, 2016b), which 
is an extension of what has been called a web of needs (Kleedorfer, Busch, Pichler, & 
Huemer, 2014), but which might also be called a synergy web. The idea is that all agents—
whether human or technological—that are part of the system would express the challenges 
they experience. Negative challenges correspond to problems, desires, or needs, i.e. perceived 
deficiencies between what the agent has and what it ideally would like to have. Positive 
challenges correspond to resources, opportunities, or offers, i.e. perceived surpluses where the 
agent has something that could potentially satisfy a need (Heylighen, 2014).  
 Because of the distributed character of value, challenges are not objectively classifiable 
as positive or negative. For example, the cows kept by a dairy farmer produce a lot of manure. 
This is a problem because the runoff from manure pollutes rivers. It is also an opportunity 
because manure can be used to fertilize crops. The problem can be turned into a resource by 
arranging a transaction between the dairy farmer and a crop farmer who comes to collect the 
manure. Such coordination creates a synergy that solves two problems at once: the dairy farm 
gets rid of its manure, thus saving on costs for disposing of it, while the crop farm is provided 
with fertilizer, thus producing more value by growing more crops. This illustrates the Oxford 
Dictionary definition of synergy: “the interaction or cooperation of two or more 
organizations, substances, or other agents to produce a combined effect greater than the sum 
of their separate effects”. 
 An offer network is an intelligent ICT platform intended to find such synergetic 
interactions. The crop farm advertises its need for fertilizer on the platform. The dairy farm 
publicizes its offer of manure in that same medium. The offer network incorporates a number 
of rules and algorithms that are smart enough to establish that the offer of manure can satisfy 
the need for fertilizer. It then brings the two farms into contact, and suggests the exchange.  
 Instead of struggling with the question whether manure has positive or negative value, 
the offer network finds a match between different challenges listed on the platform so that 
synergy, and therefore the total benefit for the different agents, is maximized. Thus, the 
complexity of value becomes an advantage rather than an impediment: because different 
agents have different needs and different offers at different moments, the one may 
complement the other so that everyone gains.  
 Of course, it is a priori not very likely that the needs of two agents would be precisely 
complementary. But when the pool of agents and their expressed needs is large enough, it 
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becomes increasingly easy to find some (perhaps quite complicated) scheme of exchanges 
that satisfies most of them (Goertzel, 2015; Heylighen, 2016b). This can be demonstrated 
mathematically, as we will now try to show. 
  
 

3. Mathematical foundations for offer networks 
 
3.1. Agents and actions 

The offer network protocol needs to represent the fundamental components of coordinated 
action: agents, actions, prerequisite conditions, problems to be solved (which we will call 
needs), and (partial) solutions proposed (which we will call offers). It moreover requires a 
medium in which these components can be expressed and a system of algorithms that would 
try to optimally match these components.  
 The first components of an offer networks are the agents: A = {agi | i = 1, …, n}. 
Agents can be humans, organizations, machines, software agents, or even natural systems, 
such as plants or animals. Each agent has an unambiguous identity, and a corresponding 
address in the network. Agents are defined by their ability to produce actions, i.e. to change 
certain conditions without themselves being changed. Thus, each agent agi is characterized by 
a set of actions {ai

j | j = 1, …m} that it is able and willing to perform under the right 
conditions. Conditions C = {ci | i = 1, …, k} are aspects of the agent’s situation that can be 
perceived as challenges. This means that they can potentially incite an agent to act, and thus 
change the condition (Heylighen, 2014; Heylighen, Busseniers, Veitas, Vidal, & Weinbaum, 
2012).  
 Agents act by transforming some initial conjunction of conditions (their input set CI) 
into a subsequent conjunction of conditions (their output set CO). In set-theoretic notation 
(where P(C) stands for the power set of C), this becomes: 
 
 ai

j : P(C) → P(C): CI → ai
j (CI) = CO, with CI = {x, y, …∈ C } and CO = {f, g, …∈ C }. 

 
Instead of set notation, we will henceforth adopt the notation used for chemical or physical 
reactions, and write a conjunction of conditions with the “+” sign: 
 

ai
j:  x + y + … → f + g + … 

 
We say that the conditions (or resources) x, y… ∈ CI are consumed by the action ai

j, while the 
conditions f, g, .., ∈ CO are produced by it. This representation is equivalent to what is called 
in AI a condition-action rule or a production rule (Anderson, 2014).  
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 The simplest actions performed by an agent merely produce or consume a single 
condition, e.g. ai

j: x → f. This means that the agent transforms x into f. For example, a person 
may transform a sheet of paper (x) into a paper airplane (f), or a computer program may 
transform a list of numbers (x) into a bar diagram (f).  
 Note that the input and output sets can also be empty: CI = ∅ = CO. In that case, the 
action of an agent is written with just a single condition, e.g.: 
 

a1:  → f 
a2:  x →  

 
The first action a1 can be read as the agent producing the new condition f without 
precondition. For example, a person can invent a story. The second action a2 means that the 
agent consumes the condition x without producing anything in return. For example, a person 
can eat an ice cream.  
 Our general assumption is that agents will only act if this action is expected to be 
valuable to them, i.e. it provides some benefit relative to inaction (Heylighen, 2014; 
Heylighen et al., 2012). Thus, we can assume that agents are motivated to perform actions. 
However, in order to be able to perform an action, the input condition of that action must be 
fulfilled. Therefore, we may say that the input conditions CI represent an agent’s challenge, 
i.e. a set of conditions to which the agent would react, either to solve the implicit problem or 
to exploit the opportunity. The consumption of CI leading to the production of CO therefore 
produces value, in the sense that the new situation is more beneficial to the agent than the 
initial one. 
 But not all potential actions are equally valuable. When confronted with a situation that 
fulfills the conditions for different actions, the agent will need to choose which action to 
perform (first). This priority ordering of actions can be formalized by associating each action 
ai with a weight or reaction constant r(ai) that expresses the relative preference, probability or 
intensity of performing this action: if r(ai) > r(aj), then the agent will first perform ai. If the 
agent can perform both actions simultaneously, then the reaction constant represents the 
relative intensity of each action, and therefore the amount of resources the agent produces 
through this action.  
 
 
3.2. Self-sustaining networks of reactions 

When an agent acts on a condition it thereby creates a new condition in the medium. This 
condition may be recognized by one or more agents as a trigger for subsequent actions, which 
produce subsequent conditions, and thus yet further actions. This process of actions eliciting 
more actions via the intermediate of the traces (changed conditions) they leave in their shared 
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medium defines stigmergy, which is a self-organizing process of coordination between actions 
(Heylighen, 2016a). Thus, the provision of a medium via which agents share the conditions 
that determine their actions is in principle already sufficient for coordination to emerge. But 
let us analyze more profoundly how such coordination can evolve. 
 The triggering of one action by a previous one concatenates the condition-action rules 
of the different agents into a network of dependencies. Such networks can be analyzed 
mathematically with the help of Chemical Organization Theory (COT). COT is a very general 
formalism for describing the self-organization of interactions in any domain (physics, 
chemistry, ecology, society, …) (Dittrich & Fenizio, 2007; Dittrich & Winter, 2008; 
Heylighen, Beigi, & Veloz, 2015). Its basic elements are reactions R that transform 
combinations of resources {b, c, d, …} into new combinations, for example: 
 

R1: b → d +2 e + f 
R2: h → c 
R3: c → h +3 f 
R4: d + f → h + b 
R5: g +2 f + e → h + d 

 
The action of an agent a that transforms an input condition (say e + f) into an output condition 
(say d) can be rewritten as a reaction between the agent (functioning as the reaction’s 
catalyst) and the conditions, here interpreted as resources. For example: 
 
 R6: a + e + f → a + d 
 
The COT representation extends our previous production systems representation by also 
including agentless reactions (which could just be natural processes, such as oxidation or the 
growth of plants) and cooperative actions (in which more than one agent is involved). COT 
provides both qualitative (algebraic) modeling, by analyzing the topology of such reaction 
networks, and quantitative (dynamic) modeling, by additionally calculating the reaction rates 
and the variable amounts of resources present at any moment.  
 What it adds to traditional network formalisms is that reaction networks are directed 
hypergraphs, rather than ordinary graphs (Gallo, Longo, Pallottino, & Nguyen, 1993). This 
means that it can describe how combinations of challenges and agents together can produce 
new combinations, thus enabling complex coordination schemes.  
 The main strength of COT is that it provides an analytic method for identifying how 
reaction networks self-organize into self-sustaining subnetworks (called organizations). These 
are networks where all resources consumed by some reaction are also produced by some other 
reaction in the network, and this to a degree sufficient for the resource not to disappear. For 
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example, all resources in the above reaction network, except g, that are consumed are 
eventually produced again. Therefore, the resource set {a, b, c, d, e, f, h} as well as its subset 
{c, f, h} are self-sustaining under the reaction set {R1, R2, R3, R4, R5}. However, {c, g, h} is 
not.  
 Organizations are attractors for the dynamics of a reaction network (Heylighen et al., 
2015): if the process is started from any initial state (specific subset of available resources), it 
will end up in a state that is part of an organization (self-sustaining subset of resources). The 
mechanism is that the application of the reactions possible in the initial state will in general 
produce additional resources, while consuming some of the existing and newly produced 
resources, until the resource set stabilizes into one where no resource is consumed more than 
it is produced. Thus, organizations can be generated by starting with random combinations of 
resources, running the reactions applicable to these resource sets, until the system converges 
to a stable set, i.e. an attractor. This is equivalent to letting the reaction network self-organize. 
 The purpose of an offer network is to maximally match the offers and needs of all 
agents, so that everyone gets what s/he needs, and nothing is wasted. In COT language, this 
means that every resource that is consumed (thus satisfying a need) is also produced by some 
other reaction (thus exploiting an offer). For example, the case of the dairy farm can be 
written as follows: 
 

R1: dairy farm + cows → dairy farm + cows + manure + milk 
R2: crop farm + manure → crop farm + crops 

 
Here, we see that the dairy farm (in collaboration with its cows) via R1 produces an offer of 
manure, which is then exploited in R2 to satisfy the need of the crop farm. Note that these two 
reactions still produce offers (milk and crops) that are as yet not exploited. However, these 
offers are likely to be consumed once we add reactions describing the needs of consumers for 
dairy and vegetables. Thus, by adding agents and the reactions in which they participate, we 
generally increase the total number of resources that are fully “recycled”, i.e. produced and 
consumed in such a way that everything balances out. 
 
 
3.3. Finding self-sustaining networks 

Coordination is optimized when a maximum of needs and offers are matched. Formulated in 
COT language, this is equivalent to the problem of finding the largest organizations (self-
sustaining subnetworks) for the network. Note that such largest organizations are in general 
not unique, and that they are likely to contain several smaller suborganizations. In principle 
the existence and reachability of such self-sustaining configurations can be proven 
analytically, but this will require a further elaboration of the mathematics of offer networks, 
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so that it can deal simultaneously with discrete, one-time offers (e.g. a book, a bicycle), and 
quantitative, continuous offers (e.g. manure, electricity).  
 A global, “top-down” algorithm to find such an organization could be the following. 
Start with the set C of all resources in the network. Apply each reaction r ∈ R to the resources 
x ∈ C. Now remove all resources in the set that are consumed by some reaction(s), but not 
produced with at least the same amount by some other reaction(s). This leaves a reduced set 
of resources, and therefore a reduced set of reactions that uses these resources to produce 
other resources. Again remove first all resources that are consumed but no longer produced, 
and then all reactions depending on those removed resources. Repeat until no further 
resources can be removed. The resource set has now become “self-sustaining”: every resource 
that is consumed is also produced, and vice versa.  
 Note that the decision as to whether a resource that is consumed is equally produced 
consists of two steps: 1) qualitative: do one or more reactions producing the consumed 
resource exist in the network?; 2) quantitative: can these reactions produce enough in order to 
compensate for the amount that is being consumed? When the first requirement is satisfied 
(which is trivially checked), the network is called “semi-self-maintaining”. Checking the 
second requirement requires knowledge of the reaction constants determining the rate with 
which the reactions run, and the application of a basic algorithm equivalent to linear 
programming. When the network satisfies that requirement it is called “self-maintaining” 
(Dittrich & Fenizio, 2007). This will normally only be necessary for quantitative, continuous 
offers. 
 The top-down algorithm appears to be always applicable, but it would need to be 
proven mathematically whether the organization it produces is (Pareto) maximal, in the sense 
that no resources can be added that would satisfy additional needs without taking away at 
least as many other resources. For a very large, constantly changing set of resources and 
reactions, as can be expected in a global offer network, this algorithm may in practice be 
impossible to compute. Therefore, we will need to investigate various heuristics and other 
algorithms (Centler, Kaleta, di Fenizio, & Dittrich, 2008) that would produce satisfactory 
results even if they cannot be proven to find a maximal organization. Given that offers and 
needs are constantly added and removed from the network, it does not seem to make much 
sense to search for any “optimal” match between them. More important than optimization 
seems to be constant adaptation and rapid exploitation of new opportunities, so that needs can 
be satisfied within the shortest terms after they appear. 
 A more practical algorithm would be to start locally, or “bottom-up”, with a few 
resources (preferably resources that are anyway produced but as yet not consumed). Applying 
the reactions that function under these conditions produces some additional resources, thus 
expanding the resource set. Repeat until no further resources can be added. Then perform the 
same iteration as above, removing step-by-step all resources that are consumed more than 
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they are produced. This again leaves you with a self-sustaining set of resources that are 
produced as least as much as they are consumed. This set will be different depending on 
which initial resources you started out with, and is unlikely to be maximal. However, you can 
find additional self-sustaining sets by removing all resources in the already found set, and 
selecting some of the remaining ones to start the procedure anew to find another (small) self-
sustaining set. This procedure can be repeated until no further self-sustaining sets can be 
found, or until new resources and/or reactions are added to the network. Thus, it can remain 
active continuously, locally searching for matching resource sets, which are then eliminated 
from the problem domain, without caring about the topology of the global network. It can also 
function in parallel, simultaneously exploring independent parts of the resource set, e.g. by 
subdividing resources according to their geographical region. 
 
 
3.4. Some examples 

Let us make these formal models more concrete by means of a series of examples. Our first 
example of synergy, in which a dairy farm tries to get rid of its manure, and a crop farm 
comes to fetch the manure to use it as fertilizer, can be represented most simply by the 
following two condition-action rules, with r standing for “removal of manure”, and f for 
“fertilizer”. 
 

dairy farm:  r → f 
crop farm:  f → r 

 
This means that the dairy farm agent offers fertilizer on the condition that some other agent 
would satisfy its need for the removal of manure. The crop farm offers to remove manure on 
the condition that it can use it to satisfy its need for fertilizer. The offer network arranges the 
exchange between the two agents by simply concatenating the two condition-action rules into 
a cycle or loop: r → f, f → r. Both benefit and synergy is created. Thus, the offer of the one 
fulfills the need of the other. Everything is recycled and nothing is wasted. 
 This is a traditional one-to-one exchange, as happens during barter, market 
transactions, or an agreement for mutual aid. For such simple exchanges, the only advantage 
in using an offer network is that a much larger range of available offers and needs can be 
scanned by the algorithm so that it becomes easier to find two mutually matching ones. The 
true power of the formalism only comes to the fore when there are more than two parties 
involved. Goertzel’s original proposal for offer networks (Goertzel, 2015) was intended to 
broaden the mechanism of barter to an unlimited number of agents whose offers and needs 
cannot be matched one-to-one, but can be matched many-to-many. 



- 13 - 
 
 
 

 Let us consider the simplest possible example: a three-agent cycle. Consider the 
following condition-action rules. Each rule states that an agent (e.g. Ben) is willing to produce 
an offer (e.g. of apples) on the condition that its corresponding need (e.g. for eggs) is fulfilled: 
 

Ben:   eggs → apples 
Cathy:  bread → eggs 
Paul:  apples → bread 
Marta:  bread → cheese  

 
A simple reordering of these rules shows that the first three can be arranged as a cycle (see 
Fig. 1). This means that the first three agents (Ben, Cathy and Paul) receive what they need, 
and in turn give what they offer. The fourth agent, Marta, cannot profit from this synergy. But 
searching for further agents and their rules in the network may well find an additional loop 
that also satisfies Marta’s need. 

eggs

apples breadPaul

offers

offers

offers

needs

needs

needs

 
 

Fig. 1: a simple loop with three agents collectively satisfying each other’s 
needs. Straight arrows depict the flow of resources (depicted as rounded 
rectangles) between the agents (depicted as triangles), with incoming arrows 
representing resources needed and eventually consumed by the agent, and 
outgoing arrows resources produced and offered to others. For example, 
Paul needs apples, which he receives from Ben, and offers bread, which is 
taken by Cathy. The broken arrows between agents and resources represent 
the initial offers and needs entered into the offer network. The loop 
represents the synergetic solution found by the network. 
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Let us consider a more complicated example, where several conditions need to be satisfied 
simultaneously. Here, the maximally synergetic arrangement cannot be a simple loop, as the 
connections between offers and needs branch, thus requiring a more complex “organization”. 
 

John:  bread + apples → onions 
Mary:  onions + eggs → bread 
Bert:  beer → apples + milk 
Ann:  milk → beer + eggs 
Karen:  bread → cheese 
Tom:  cheese + wine → eggs 

 
Here, Tom’s needs cannot be fulfilled as no one is offering wine. This means he also won’t 
take the cheese offered by Karen, and therefore Karen won’t find anybody to give her bread 
since she cannot give anything in return. Therefore, these agents and their reactions cannot be 
part of the organization. However, the first four agents can form a self-sustaining 
organization, because each resource needed by one of them is offered by one of the others. 
This closed organization is depicted in Fig. 2. (Note that as the number of reactions increases, 
such a graphical depiction quickly becomes unwieldy). Like in the previous case, searching 
for further agents or rules in the network is likely to create a match for the needs of Karen and 
Tom as well, by extending the closure of the network. For example, it would be sufficient to 
find an agent that is willing to exchange eggs for wine and bread. 
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 As a final example, we will include unconditional offers (“gifts”) and needs 
(Heylighen, 2016b). Suppose that Alice is an old lady who needs the big tree in her garden to 
be pruned. She cannot do that on her own, and she does not have the means to pay or 
otherwise reward someone for doing it. Therefore, her offer is empty. Mary, on the other 
hand, is ready to lend out a saw, on the condition of getting it back, but cannot prune trees 
either. Still, she has a surplus of eggs, which she is willing to donate to anyone who needs 
them. Martin is willing to prune the tree on the condition that he can use a saw, and get a beer. 
By letting the offer network search for additional, complementary condition-action rules, we 
may come to the following closed network in which everybody’s needs are satisfied: 
 

Alice: prune tree → 
Mary: saw → saw 
Mary: → eggs 
Martin: beer + saw → prune tree + saw 
John:  egg → apple 
Henry:  apple + egg → beer 

 

 

bread

eggs

apples milk

beer

onions

 
Fig. 2: a more complex closed network, where each of the resources needed or consumed by some 

agent is also produced or offered by another agent. Thus, each of the resources has both an incoming 
(production) and an outgoing (consumption) link. 
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4. A roadmap for developing a global offer network 
 
We have defined offer networks abstractly, and argued that they can potentially solve the 
problem of global coordination between the needs, offers and actions of all human and 
technological agents. To realize this promise, many concrete steps will have to be taken, so as 
to implement this general approach into an increasingly powerful technological platform. We 
will now briefly survey the most important of these steps, thus outlining a roadmap towards 
building such a platform. 
 
 
4.1. Identifying users 

The first step is to define a general protocol for representing agents, their needs and their 
offers. This protocol should be public, non-proprietary and standardized, so that it can be used 
by anyone using any hardware or software on any website implementing the protocol without 
need for entering website specific data such as user names or preferences. This would make 
the offer network system transparent and universal, so that it can interconnect and integrate 
thousands of as yet independent platforms (Heylighen, 2016b). A prototype of such a protocol 
and a platform that supports it has already been implemented as the Web of Needs (Kleedorfer 
et al., 2013, 2014).  
 Human agents are here represented as “user proxies”, i.e. formal entities that list a 
particular individual’s needs and offers. This demands a dependable connection between a 
user and its proxies. That in turn requires a universal, open protocol for defining personal 
identity (Evrard, Erdmann, Holmquist, Damon, & Dietrich, 2015; Recordon & Reed, 2006), 
such as WebID (http://webid.info/). It should allow individuals to be simply, securely and 
unambiguously identified across any platform, without need for separate logins. The ID 
protocol would ensure that the requests or offers are routed to the right people, so that they 
can realize their offer or receive what they need. The offer network would associate each 
resource with one or more identities/proxies, and thus build up a general picture of what this 
person would like to give or to receive. 
 However, the ID protocol should not compromise privacy, in the sense that senders or 
receivers of offers may want to remain anonymous. Therefore, users of the network do not a 
priori need to know the real name of the person with whom they are interacting. In principle, 
individuals should be able to create different identities (e.g. one for dating, one for 
professional communication, one for playing games) if they prefer not to mix up their 
different “personas” or preferences, or to create an extra layer of anonymity. A limitation of 
such a setup, though, is that, as we will discuss further, a smart offer network should be able 
to learn the tastes and preferences associated with a certain identity in order to provide that 
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person with more appropriate offers and recommendations. The more identities a person has, 
the less information per identity the network will gather, and therefore the less personalized 
the recommendations it can make.  
 Initially, identification can be achieved by a simple login, where the user enters 
username and password to identify herself. In a later stage, identification of users may happen 
by automatic recognition of biometric data, such as fingerprints, iris scans, or voice. Then, it 
would suffice that a user sits in front of her computer or smartphone in order to be able to 
formulate offers and needs.  
 
 
4.2. Integrating offer networks with the Semantic Web 

Initially, offers and needs can be expressed in natural language (e.g. “I need a bike and I offer 
an aquarium”). But natural language tends to be vague and ambiguous, and may not capture 
all the relevant aspects of the requested or offered resource. Disambiguation can be performed 
with the help of a semantically structured list of words and their senses. For example, the very 
extensive WordNet database (Fellbaum, 2012) proposes “motorbike” and “bicycle” as distinct 
possible meanings for the word “bike”. For each of these meanings, it holds a “synonym set”, 
i.e. a list of words that can have this same meaning (e.g. “cycle”, “bike” and “bicycle”). This 
ensures that an offer of a “cycle” can be matched with a properly disambiguated request for a 
“bike”.  
 Such meanings correspond to clearly defined concepts or categories. A system of 
categories that is formally specified so that it can be used by a computer program without 
need for human interpretation is called an ontology (Livet, 2012). The concepts in an ontology 
are linked by specific types of relationships that determine their meaning, thus forming a 
semantic network. Semantic networks such as WordNet situate a concept such as “bicycle” 
within a neighborhood of associated concepts. These include hypernyms (more general, 
encompassing categories, such as “human-propelled wheeled vehicle”), hyponyms (more 
specific subcategories, such as “mountain bike” or “foldable bike”), sister terms (similar 
categories, such as “tricycle” or “scooter”), meronyms (terms for parts, such as “bicycle 
wheel” or “saddle”) and holonyms (terms for larger wholes, such as “aquarium kit with 
accessories”) (see Fig. 3).  
 All of these related concepts could be suggested to users as potentially more accurate 
formulations of their offer or need. For example, perhaps the user, rather than wanting a 
bicycle in general, may be more interested in the concrete problem of replacing his bicycle’s 
broken saddle, or in getting a foldable bike, or perhaps even a different kind of wheeled 
vehicle without motor. The more precise the characterization of offers and needs, the easier it 
becomes to find a good match.  
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 In semantic network terminology, a concept and its hypernym are connected by an 
“ISA” type of link: a mountain bike IS A bicycle. A concept and its meronym are connected 
by a “HASPART” relationship: a bicycle HAS as PART a saddle. Both types of links can be 
interpreted as production rules (Heylighen, 2001): IF there is a mountain bike, THEN there is 
also a bicycle: 
 

mountain bike → bicycle 
bicycle → bicycle saddle 

  
By incorporating such semantic links, the offer network increases its power of finding 
solutions to challenges. For example, using these production rules the network can infer that 
one person’s offer of a “mountain bike” can satisfy someone else’s need for a “bicycle” and 
that an offer of a “bicycle” may satisfy the need for a “bicycle saddle”, if no saddle would be 
available elsewhere in the network.  

BicycleScooter

Human-
propelled vehicle

Mountain 
Bike

Foldable 
Bike

Tricycle Skateboard

Racing 
Bike City Bike

Wheeled 
vehicle

Tandem

ISAISA ISA

ISAISAISAISA

ISA

iSA

Hypernym

Hyponyms

s i s t e r
terms

ISA

 
 

Fig. 3: the category of “bicycle” situated in part of its semantic neighborhood, including 
encompassing categories (hypernyms) and subcategories (hyponyms), connected to each 

other by “ISA” links. 
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 For more precise matching between offers and needs, resources should be situated in 
the ontology with their specific attributes or features. Ideally, each concept recognized by the 
system should call up a template that lists its most relevant attributes. For example, for the 
category “fish tank/aquarium”, relevant attributes are volume, length, width, height, and 
material (with possible values “glass” or “plastic”). For the category “book”, the attributes 
include author, title, year, genre, publisher and edition. The system should by default propose 
the most common values for these attributes (e.g. glass for aquarium material), while taking 
into account what it already knows about the resource. For example, entering an author’s 
name would bring up a list of book titles by that author in the order of popularity, and 
selecting a title would add the year and publisher of first publication as default values for 
these attributes.  
 Concepts, attributes and values (including semantic links between concept) are best 
formulated in the protocols of the Semantic Web (Allemang & Hendler, 2011; Berners-Lee & 
Fischetti, 1999). This is an extension of the World-Wide Web standard intended for machine-
readable, formal specifications of data and knowledge that is still in development. It has 
already engendered a number of more specific standards such as OWL (Web Ontology 
Language) and RDF (Resource Description Format) that may be used for the representation of 
offer network components without requiring many additions. The use of such emerging 
standards will ensure the easy interchange of data between the offer network and other 
platforms and databases, thus fulfilling the web’s initial aim of supporting a universal 
knowledge system. 
 Demands for ontological specification should not put any unnecessary burden on the 
user. They should in particular make it easy to ignore irrelevant features. For example, if there 
are differing prints of a book that all possess the same content, then most users would not care 
which year the book was printed. Or perhaps a user may not care which brand a bike is, as 
long as it is the right type and size. Depending on how precisely the offer or request is 
described, the matching algorithm will have a smaller or a larger choice of potential matches 
to propose. For the user it seems advisable to be less specific for requests, as this will find 
more matching offers, and be more specific for offers, as the matching algorithm will 
normally prefer offers that match a specific request in detail, while ignoring these details for 
more general requests. 
 When no precise match can be found, the offer network can use the ontology structure 
to suggest available resources that are semantically similar. For example, if no city bike is 
available, it may suggest a mountain bike. For concepts with attributes, the semantic 
neighborhood would include instances where some of the desired attributes are different or 
absent. For example, the network could propose a plastic aquarium if no glass one is 
available, or one of 100 liter volume when no 80 liter one is available. 
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 For such a smart matching program to function well, an increasingly elaborate ontology 
with good defaults and suggestions will have to be developed for nearly all resources that 
someone might request or offer. This is likely to evolve out of the merging of hundreds of 
both general (e.g. WordNet) and specialized ontologies (e.g. for books, chemical products, 
plants, songs, machine parts, cars, hotel rooms, etc.). In order to guarantee an open-ended 
system, this should be complemented by the ability of users to create templates for new 
categories that do not exist in the system yet. Moreover, machine learning algorithms may 
find recurrent patterns in common offers and requests, and propose these patterns as new 
categories and templates. Eventually, this will produce a global ontology that categorizes 
about all commonly used resources and needs present on Earth, with their most relevant 
attributes and relationships. This would allow users to describe any challenge with just its 
most characteristic aspects, and the network to infer all other aspects not explicitly entered. 
 
 
4.3. Integrating the Internet of Things 

Another step in our roadmap for developing a planetary-scale offer network is the 
incorporation of the Internet of Things. This is an emerging infrastructure for the exchange of 
information between people and physical objects, and even between the objects themselves 
(L. Atzori, Iera, & Morabito, 2010; Rifkin, 2014). Soon, most fabricated objects will have an 
in-built tag (e.g. RFID) that can be wirelessly consulted to ascertain the identity, features and 
state of the object. Thus, it may be sufficient to check the Internet address of the bicycle that 
you would like to offer or to request in order to get all its relevant attributes, so that they can 
be published on the offer network. (Note that at present you can already point a scanner at a 
bar code—e.g. on a book—and get a description of the product it is attached to, but this still 
requires local, physical interaction.) 
 Objects themselves will eventually be able to publish their needs. For example, a 
bicycle with a flat tire could request the right size and type of tube for a replacement. An 
object that is overheating might request fire-protection measures, such as the activation of 
sprinklers. Objects should also be able to advertise their offers. For example, a publicly 
shared bicycle could announce its availability to all people needing transport within a certain 
neighborhood of its location.  
 Future intelligent artifacts will be able to offer a variety of products and services. For 
example, 3-D printers can produce a wide range of objects that they assemble out of plastic 
materials on the basis of a specification of the precise three-dimensional shape and 
composition (Lipson & Kurman, 2013). That shape specification can be coupled to the 
ontological specification of the corresponding category of objects, such as bicycle saddles. 
The attributes could then be used to specify variable properties, such as width, length, 
material or color. In this case, users would merely need to select their preferred values for the 
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attributes from within the template proposed by the offer network, and the requested object 
would be immediately produced by the printer in their place of residence (Heylighen, 2015; 
Rifkin, 2014).  
 More complex requests (e.g. for a tailor-made car or suit of clothing) could be directed 
by the offer network to industry-level assemblers in factories, and delivered by autonomous 
vehicles. Requests for specific services, such as transportation or catering, could also be 
satisfied by smart objects, such as robots, self-driving vehicles, drones, or remotely 
controllable devices such as coffee machines or ovens.  
  
 
4.4. Incorporating knowledge and intelligence 

As yet, we have only discussed applications of offer networks where the match between offer 
and need is straightforward, because they both belong to the right category with the correct 
attributes. This is similar to how a user enters a query in the catalog of a web shop, and the 
search engine returns the matching entries. But the condition-action rules that connect needs 
with the conditions necessary to satisfy them enable a more intelligent form of problem 
solving or need satisfaction. Here, the role of the search engine is extended to what in AI is 
called an inference engine (Singh & Karwayun, 2010). Such an engine can chain together a 
branching sequence of rules so as to find a fit encompassing several conditions. Thus, it may 
assemble the solution to a complex need by combining several independent offers that are 
distributed across different agents and locations.  
 For example, assume that your request is to organize a party. The inference engine may 
use some of the following relevant production rules: 

 
guests + location + live music + drinks + food → party 
list of friends + invitation to party + distribution of invitation to list → guests 
piano on location + pianist → live music 
piano + truck + mover → piano on location 
caterer → food 
soft drinks + water + juices + beer + wine → drinks 
loft → location 
bar → location 
party hall → location 

 
Note that some of these rules can be derived from standard semantic links, such as “a loft ISA 
location”, or “a party HAS_PART guests”, others from more specific causal relations, such as 
“a pianist having access to a piano CAN_PRODUCE live music”.  
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 The complex request for a party can now be recursively decomposed into a number of 
simpler requests, each of which can be matched against a range of available offers, such as 
pianos, trucks, beer, etc. The algorithm that moves from the desired outcome to the conditions 
necessary to achieve it, and from these conditions to even earlier preconditions, is called 
“backward chaining”. The process will continue moving backward while exploring a 
branching network of possibilities until an offer is found for each of the required conditions. 
If more than one possible way is found to fulfill a condition, the first or ideally the best one 
will be selected. For example, if no one has a loft available and all party halls are fully 
booked, the nearby bar may come out as the most suitable location for the party.  
 Inference engines can also perform forward chaining, starting from an available offer 
and finding the requests to which this offer can best contribute. There are a wide variety of 
other intelligent algorithms for making such chains of inferences across a complex network of 
rules with overlapping conditions. To realize this intelligence, we will first need to define a 
protocol for formulating production rules in a standardized manner that different inference 
engines can understand. However, the inference algorithms themselves should not be included 
into the protocol yet, given that we do not know which algorithms would be most effective. It 
is better to let a variety of inference engines, algorithms and heuristics compete for their 
ability to quickly and efficiently match offers and requests. For example, users may have 
access to different AI agents implementing different heuristic methods, and find out through 
trial-and-error which ones work best for them. If different programs are better at different 
types of problems, their features may eventually be integrated into a more broad and versatile 
program. 
 Another necessary step in our roadmap towards global intelligence is the collection of 
an as broad as possible set of relevant reactions or rules. A good ontology will already 
incorporate semantic rules such as “an apple ISA fruit”, “fruit HAS_PART sugar”, “fruit 
HAS_PART vitamins”. However, we will also need causal and procedural rules to describe 
the processes that may be needed to make predictions or to solve problems, such as “excess 
acid production in the stomach CAUSES ulcers” (causal), and “to suppress the production of 
acid in the stomach one can take omeprazole” (procedural).  
 There already exist extensive databases of common-sense rules, such as CYC (Lenat, 
1995). These can be enriched by more specialized knowledge bases, e.g. with medical 
expertise. Further rules can be extracted by on-going knowledge acquisition from experts 
(Wagner, 2006), and sophisticated machine learning techniques, such as deep learning 
(Hinton, Osindero, & Teh, 2006), applied to “Big Data” collections. Users too should be able 
to propose as yet missing rules. For this, they may rely on an intelligent interface that helps 
them to structure the knowledge they enter by checking their proposals for ambiguities and 
inconsistencies with existing rules, and by suggesting more precise formulations (Heylighen, 
2001). Like the offers and needs, all these rules should be made publicly accessible on a huge, 
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shared information network, so that everyone can use them, but also examine their accuracy, 
and if necessary suggest corrections. 
 Once a variety of both specific and general rules are available, the offer network will 
not only be able to answer concrete requests, but also more abstract questions, such as “which 
warm-blooded animals can get ulcers?” or “what contributes to global warming?” Answering 
such questions will required sophisticated chains of inference across many rules entered by 
different experts across different fields. This turns the offer network into a universal 
knowledge system, integrating the whole of human and machine-derived knowledge into a 
coherent intelligence that can answer nearly any question for which an answer can be 
inferred. This is the Global Brain version of the old dream of the encyclopedists (Heylighen, 
2011, 2015; Rayward, 1994; Wells, 1937).  
 
 
4.5. Implementing theory into practice 

An offer network is much more than a universal knowledge system, though, because it 
combines abstract knowledge with the ability to deliver concrete resources. For example, if 
you want to set up a healthcare center in your town, you would need more than the ability to 
ask health-related questions to a system incorporating medical knowledge. You would also 
need access to the medicines, machines, and professional service providers that can 
implement the solutions suggested by the knowledge-based system.  
 When tackling real needs, you cannot separate the theoretical solution to a problem 
(e.g. omeprazole may cure an ulcer) from its concrete implementation (e.g. this patient with 
an ulcer will need to take omeprazole capsules under the supervision of a qualified 
professional). The offer network will first need to decompose the initial need (a patient 
wishing to get rid of recurrent stomach pain) into a number of abstract preconditions (the 
symptoms can be explained by an ulcer, an ulcer can be cured by omeprazole, therefore the 
patient should better take omeprazole capsules). It then must locate an actual offer of 
omeprazole capsules, and a professional able to supervise the treatment.  
 In the simplest kind of offer network, the patient would formulate a direct request for 
omeprazole capsules. However, in general we cannot expect people to know exactly what 
they need in order to solve their problems. It is here that the distributed intelligence of the 
offer network shows it power, by filling in the knowledge gaps via its network of rules and by 
integrating widely distributed questions, answers, offer and needs into an efficient, 
coordinated plan of action that tackles as many challenges as possible. 
 The decomposition of basic needs into complex plans of action is not limited to 
individual requests. The desire to create a collective provision, such as a hospital in the poor 
African town of N., will require the coordination of many human resources (such as builders, 
nurses, doctors, administrators, technicians), physical resources (building materials, medical 
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devices, power generators, medicine supplies, etc.), and cognitive resources (medical 
expertise, building blueprints, legal framework, management policies, etc.). All of these can 
be mobilized by the offer network, after it has selected resources matched for their 
complementarity, so that they are ready to work together synergetically.  
 The different people collaborating on such an enterprise do not need to know each 
other in advance: the offer network will have selected them for their willingness and ability to 
contribute to the overall goal of building a hospital and thus helping the town inhabitants. It is 
unlikely that any of these individuals would have formulated a specific offer involving 
hospital building in the city of N. However, they may have formulated more general offers of 
doing volunteer work in an African country, while specifying their concrete areas of 
competence (e.g. building, administration, nursing, and others). The offer network, using its 
ontology and its general knowledge rules, should be able to infer which of these general offers 
best match the specific needs that it has derived by decomposing the general need of hospital 
building in N.  
 While the work is on-going, the different collaborators will form an ad hoc 
organization. Since many people (e.g. architects working on a blueprint, volunteers donating 
medicines, lawyers formulating the legal framework) can collaborate on the project without 
actually meeting, they may form what has been called a “decentralized autonomous 
organization” (M. Atzori, 2015; Garrod, 2016). This is a social system that is held together 
merely by a system of coordinated rules, e.g. as implemented in the offer network. As soon as 
the project is completed, the organization is likely to disband as easily as it was assembled, 
freeing up its members for participation in different projects. 
 To start the process, it is sufficient that an individual or organization (e.g. an NGO) 
would formulate the general need for a hospital, and that a sufficient number of other parties 
confirm its importance in order to give it a suitably high priority. However, in a later stage the 
offer network itself may formulate such a general goal, by inducing the need for a larger, 
collective solution from the many unfulfilled individual requests for medical care in the city 
of N. In this scenario, the offer network can analyze the immense number of as yet unfulfilled 
needs it will have gathered by grouping together related needs (e.g. all individual needs 
involving medical care in the geographical region of N.). It can then use composition rules to 
reformulate this need-cluster as a single problem (lack of health care in N.) that demands a 
single, high-level solution (building a hospital). 
 
 
4.6. Learning and reputation systems 

Up to now, we have assumed that the people, rules, and description of offers and needs are 
dependable and truthful, so that you can trust that the offer network will deliver what it 
promised. This will obviously not always be the case: while most people tend to be honest, 
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they can be forgetful, badly organized, inaccurate in their descriptions, and ambiguous or 
erroneous in the rules they formulate. Therefore, the system will need an on-going process of 
quality control, to bring forward the best and discourage or discard the not-so-good. Given the 
complexity of value, there are no objective, absolute criteria for assessing how valuable or 
important an offer or need is. The ultimate criterion is in how far the people who formulated a 
need are subjectively satisfied with the solution they receive. Therefore, all users will be 
invited to express their degree of satisfaction after they received an offer. This produces a 
feedback signal that allows the offer network to learn more effective ways of tackling the 
challenges, by reinforcing the use of the more productive elements, while reducing the 
contribution of the less productive ones. 
 In the simplest case, a need (e.g. for a means of transport) expressed by a single person 
(e.g. Mary) is satisfied by a single offer (e.g. a no longer used bicycle) coming from a single 
person (e.g. John). Mary evaluates the degree to which she is satisfied with the bicycle, e.g. 
by giving it a score between 0 (absolutely useless) and 5 (ideal). These points are added to 
John’s reputation within the semantic category “offering physical objects” and more 
specifically “bicycles”. Mary in general does not need to know John: the evaluation is for this 
specific offer, not for John as a person. After many different offers, though, John accumulates 
many reputation points spreading across different categories (e.g. “repairing cars”, 
“answering questions on geometry”, “offering fruit”, …). When choosing between otherwise 
equivalent offers from different individuals, this allows the network to select the people that 
are most likely to deliver a satisfactory solution within this category. 
 There is in general no need to add these points together in order to determine an overall 
evaluation of John. However, when estimating how far John will be able to deliver a 
satisfactory offer for some need for which John has not been evaluated yet, the network may 
try to infer John’s reliability based on his record in semantically neighboring domains (e.g. 
John may have a poor record in repairing cars, but be good in answering questions on 
geometry, and therefore he is likely to also be good in answering questions on algebra). 
John’s overall score may only provide useful information when he makes a completely new 
offer, unrelated to anything he did before. This global score should remain invisible to the 
public, so that John cannot be judged by society as being superior or inferior to others in some 
general sense. This pre-empts the emergence of hierarchies and the resulting inequalities, 
rivalries and jockeying for position. Thus, reputation should not become the offer network 
equivalent of the one-dimensional value of monetary wealth (Heylighen, 2016b). 
 On the other hand, the fact that John knows that each good action he performs increases 
his reputation will motivate him to provide the best possible service, and to avoid not 
fulfilling his commitments (De Alfaro, Kulshreshtha, Pye, & Adler, 2011; Jøsang, Ismail, & 
Boyd, 2007). This motivating power of reputation can be increased by allowing people with a 
sufficiently high reputation to take more out of the system than they put in, thus profiting 
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from unconditional offers. However, exploiting such gifts without adding anything in return 
should gradually reduce their reputation, so that they are not inclined to take out more than 
their fair share. This ensures that they do not turn into “free riders” that consistently abuse the 
system (Heylighen, 2016b). Instead, it motivates them to behave altruistically by 
unconditionally helping others just as they have been helped. Providing anyone who joins the 
network by default with a positive reputation makes the offer network flexible enough to 
supply resources to people who cannot offer anything in return yet because they are too poor. 
For people who are intrinsically needy, e.g. because of old age or poor health, this positive 
reputation may be upheld indefinitely.  
 The equivalent of reputation points can also be given to objects and rules, so as to 
assess how helpful or dependable they are in satisfying needs. For example, experts can 
directly evaluate the accuracy of rules entered into the system. The total score of the rule, 
preferably weighted by the reputation in the domain of the person who gave the points, can 
then be used as a first indication of the accuracy of the knowledge it represents. When 
different rules compete for execution, rules with a higher reliability score or “weight”, or that 
produce more specific results, will normally be preferred to less reliable or more general rules 
(Holland, Holyoak, Nisbett, & Thagard, 1989).  
 Finally, such weights should be able to adapt depending on the actual results. This will 
normally require some analog of the backpropagation method for neural networks or similar 
“credit-assignment” algorithms that try to fairly allocate rewards or penalties to the different 
rules that cooperatively produced a solution (Holland et al., 1989). The same rule may have 
participated in several chains of inference. If the solution coming out of these chains was on 
average better than the solution coming out of chains that used an alternative rule, then the 
first rule will be reinforced relative to the alternative, and thus be considered as more reliable 
by the network.  
 In this way, the offer network will be constantly learning from its experience, just like 
the neural networks in our brain, and thus become ever more effective. 
  
 
4.7. Soft constraints and recommendations 

For common needs, it is likely that the offer network will find many offers that satisfy the 
stated requirement. In this case, the network must do more than satisfy the “hard constraint” 
that offer and need should match at the ontological level: it must order the different offers 
according to some preference criterion so that the “best” offers are proposed first. Assuming 
that all the required hard conditions are fulfilled, so that there is no a priori difference in 
value between the offers, several soft criteria seem worth considering.  
 The most obvious one is the estimated quality or reliability of the offer. This may be 
computed as a duly weighted combination of the reputation of the person(s) offering, of the 
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reputation of the ontological subcategory or resource being offered (e.g. a particular brand of 
mountain bike, or a particular answer to a commonly asked question), and of the weight of the 
rules that were used to determine in how far this offer would fit the need.  
 Another general criterion is the “nearness” of the offer, which will depend on the 
topology used to structure the offer space. The simplest topology is geographical distance. For 
physical offers that must be transported to the person that needs them, it is obviously better to 
select those that will require the shortest travel, as this will minimize time, effort, and energy 
spent in the transfer. However, this criterion is irrelevant for offers of informational goods or 
services, such as a music recording or a translation, which can be transmitted immediately 
over the Internet.  
 If no perfect match of ontological categories can be determined, e.g. because the need 
is unique, or is expressed vaguely or ambiguously, then semantic nearness seems to be an 
important criterion: selecting the offer that appears most similar to what was asked. This is 
typically how search engines answer questions, by returning the documents that seem closest 
to the meaning of the search string that was entered.  
 For transactions that involve some degree of social interaction, e.g. a request for a 
tennis partner, a date, or a collaborator, social nearness may be a useful criterion. This can be 
calculated on the basis of the requester’s social network, in which close friends can be defined 
as a first neighborhood, acquaintance as a second level neighborhood, friends of friends as a 
third level neighborhood, etc. There exist reliable algorithms for calculating the “distance” 
between two nodes in such a network (e.g. Fouss, Pirotte, Renders, & Saerens, 2007), and the 
preference would be for minimizing this distance. More generally, most people might prefer 
giving or receiving offers to or from others that are within their extended community, as the 
exchange to some degree creates a bond, and you may prefer this to happen with someone 
that you are likely to interact with on some further occasion as well, or that you are more 
inclined to trust because of having mutual friends. 
 For very common needs, such “nearness” criteria can be used to reduce the search 
space in which the algorithm will be searching for matches. For example, at any moment 
millions of bicycles may be offered all around the globe. There seems to be little sense in 
examining all of these before selecting the best match. A more efficient method may be to 
start looking at all the bicycles offered within the same city or geographic area, and to focus 
on those offered by people within your extended community. Thus, depending on the relevant 
topology, a series of concentric neighborhoods around the present need can be defined, which 
the algorithm would explore in the order of increasing radius, until it finds a sufficient number 
of good matches.  
 Priority criteria should normally depend on the user, given that different individuals 
have different preferences. Adjusting the criteria can be done manually, by letting the user set 
the relative weights of various standard criteria. It can also be done automatically, by inducing 



- 28 - 
 
 
 

implicit preferences from the choices the user made and the degree of satisfaction with these 
choices (Heylighen & Bollen, 2002). Thus, the offer network should be able to develop an 
increasingly accurate picture of a particular individual’s needs, values and preferences. That 
would allow the network to propose offers even when no explicit need has as yet been 
formulated, thus attracting the user’s attention to potentially valuable opportunities.  
 This is a function that is already well developed in so-called recommender systems 
(Ricci, Rokach, & Shapira, 2011), which e.g. propose books, videos or songs to a person 
depending on the kind of books etc. that they previously enjoyed. To foster diversity and 
exploration, such recommendations should not be limited to offers immediately similar to 
previously consumed offers: ideally there should be an element of serendipity, so that the user 
is occasionally challenged to try something new that only has an indirect connection with 
what that user typically likes or needs (Heylighen & Bollen, 2002). 
  
 
4.8. Integrating social governance 

In an even further, as yet more vaguely envisaged stage, the offer network protocol should be 
able to integrate the functions of governance, law and justice. Thus, it would ensure that 
transactions are to the benefit of society, and not just of the individual parties involved. This 
can be achieved by expressing laws, contracts, policies, and ethical or deontological norms as 
condition-action rules: in the following conditions, the following actions should, or should 
not, be performed. Thus, legal constraints, such as the obligation to fulfill a contract or the 
prohibition to deliver weapons or drugs, can be combined with practical procedures about 
how to tackle a particular problem in order to determine the best course of action. When 
different rules compete, the legally binding rules should have an absolute priority rather than 
just a higher weight. Commonly accepted policies or norms, on the other hand, may merely 
impose a high priority for certain actions, without a priori excluding actions that do not obey 
these norms.  
 As a general principle, the number of legal constraints should be minimized, so as to 
keep the system as flexible and transparent as possible. On the other hand, given the 
potentially immense power of adaptation and self-organization of offer networks, the legal 
conditions entered into such a system will probably engender much less rigidity and friction 
than present regulatory and legal systems. Part of the reason is that there will not be a need for 
a painstaking examination of all possible regulations that may apply whenever performing 
some transaction: the same algorithms that search through all ontologically relevant 
condition-action rules to match offers and needs will automatically take into account any 
regulatory rules that apply, making sure e.g. that applicable taxes are automatically withheld 
and deposited with the appropriate authorities.  
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 The extra level of trust and dependability required for contracts and laws may be 
secured by emerging Internet encryption and security technologies, such as the Blockchain 
underlying Bitcoin. It has been proposed that these may eventually be used to create 
“Decentralized Autonomous Organizations” (Atzori, 2015; Garrod, 2016) that are held 
together by automated contracts that cannot be tampered with because the codes identifying 
them are fully distributed. 
 Offer networks can also implement a more flexible form of social governance that has 
been called “libertarian paternalism” (Thaler & Sunstein, 2003), “nudging” (Thaler & 
Sunstein, 2008), or “mobilization” (Heylighen, Kostov, & Kiemen, 2013). The principle here 
is that there are no absolute obligations or prohibitions: everyone has the freedom to choose 
from the full range of available options. However, the options are arranged in such a way that 
the ones that are most beneficial to society (e.g. consuming vegetables, or taking courses) 
become easiest, most apparent or most attractive to choose, while those that are least 
beneficial (e.g. consuming tobacco, junk food or fossil fuels) require some special effort or 
motivation to go beyond the default choice. Socially beneficial “nudging” can be achieved by 
adding soft constraints that represent externalities, i.e. the costs and benefits to others of a 
transaction between private parties (Cornes & Sandler, 1996; Heylighen, 2016b). These 
additional constraints would affect the order or priority of the solutions suggested by the offer 
network. For example, a less polluting option would get a higher priority even though it may 
fit the request somewhat less accurately. 
 Like all other rules in the network, both legally binding and “nudging” rules should be 
made public and explicit, so that anyone can scrutinize them, evaluate them, criticize them, 
and if necessary propose alternatives. This pre-empts the danger that people’s choices would 
be invisibly manipulated by private concerns or totalitarian governments (Helbing, 2015), e.g. 
for commercial profit or political power.  
 
 
4.9. Integrating the ecosystem 

Perhaps the most fundamental externalities represent the costs of an action to the larger 
ecosystem, e.g. in terms of its contributions to global warming, exhaustion of scare resources, 
or destruction of natural habitats. Therefore, the governance realized by an offer network 
should eventually extend to the biosphere. However, deciding what these costs and benefits 
are should ideally not be left to a committee of lawmakers. A better option is to include the 
ecosystem itself into the network, on the same footing as the people who formulate their 
human offers and need.  
 This can be achieved by modeling the physical, chemical and biological processes that 
govern the planetary ecosystem in the form of reactions that consume and produce resources 
(Heylighen et al., 2015). For example, the large-scale contribution of organisms to the 
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planetary system can be described abstractly by the following self-sustaining cycle of 
reactions: 
 

plants + minerals + sunlight + CO2 → plants + oxygen + waste  
animals + plants + oxygen → CO2 + animals + waste  
waste + decomposers + oxygen → decomposers + CO2 + minerals 

 
Such “natural” reactions are then added to the “social” and “technological” reactions already 
present in the network, which include, e.g.: 
 
 fossil fuels + power plants → power plants + CO2 + electricity 
 
The network is then analyzed as a whole by the algorithms searching for self-sustaining 
organizations. In this case, the program may come to the conclusion that the overall network 
is not sustainable because of an overproduction of CO2. Making it sustainable requires adding 
reactions that consume CO2, or that produce energy without CO2 as waste product, e.g.: 
 
 sunlight + solar panels → solar panels + electricity 
 
The matching and recommendation algorithms may therefore increase the priority of such 
reactions, while downgrading the priority of CO2 producing reactions. This ensures that the 
ecosystem’s “services” (e.g. waste decomposition, CO2 absorption), “offers” (e.g. of oxygen) 
and “needs” (e.g. for forested areas) are duly taken into account (Costanza et al., 1997), so 
that the global system including nature, society and technology is truly sustainable.  
 For this to work, we need an as accurate and comprehensive as possible representation 
of the reactions that govern the planetary ecosystem. The formulation of these production 
rules and their coupling into a global network may be provided in part by the emerging 
“Global Systems Science” with its interest in developing a “Living Earth Simulator” 
(Helbing, Bishop, Conte, Lukowicz, & McCarthy, 2012). In practice, an immense variety of 
more specific, local reactions (e.g. between a particular species of flower and the insect 
populations that pollinate it) will be entered into the system by a variety of experts, while 
being evaluated for their relative importance by other experts, and tested as to their adequacy 
by checking in how far the predictions inferred from them are accurate. Thus, they will be 
subjected to the same kind of learning mechanisms that should gradually broaden and deepen 
the overall offer network, ensuring that it becomes increasingly effective in satisfying all 
needs, social as well as natural.  
 The offer network protocol will need to ensure that ecological reactions are entered as 
easily into the system as human offers and needs. This may require the ontological 
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specification of ecological “agents” that perform specific reactions, such as certain 
populations (e.g. of bees) or geographical areas (e.g. the Amazon rain forest). 
 
 

5. Conclusion: tackling global challenges 
 
A previous paper (Heylighen, 2016b) has argued that offer networks are potentially able to 
tackle the most fundamental problems of our present society, including inequality, fragility, 
financial instability, poverty and unsustainability. This requires changing the very foundations 
of our present socio-economic system: away from the accumulation of money and towards an 
intelligent system of sharing, collaboration and exchange based on directly matching offers 
and needs (Goertzel, 2015). The principle is to maximally exploit potential synergies between 
what different human, natural and technological agents have to offer, by efficiently 
coordinating their actions at the local and global level. The present paper has started to 
develop a concrete strategy for reaching this lofty goal. 
 The first step was to formulate the abstract elements of an offer network protocol, i.e. a 
universal system of formal representations and methods for expressing and matching offers 
and needs. The mathematical foundations for such a protocol may be derived from a synthesis 
of production systems (Anderson, 2014; Holland et al., 1989) with their condition-action rules 
and inference engines, and Chemical Organization Theory (Dittrich & Fenizio, 2007; 
Heylighen et al., 2015), with its procedures for finding self-sustaining “organizations” within 
networks of reactions. We performed a first step in that synthesis by showing the direct 
correspondence between condition-action rules and reactions: both transform a conjunction 
of necessary conditions or resources (needs) into a conjunction of newly produced conditions 
or resources (offers). Assuming that actions are only performed when they are beneficial to 
the agent performing them, the input conditions can be interpreted as part of that agent’s 
needs, and the output conditions as its offer. 
 The next step will be to explore and integrate the different algorithms that can match 
offers and needs by chaining together such rules or reactions so that they reach closure, i.e. 
generate a subnetwork in which all resources that are consumed (needed) by some reaction(s) 
are also produced (offered) by some other reaction(s). We proposed some examples to 
illustrate how this can be done, and argued on theoretical grounds that this can in principle be 
achieved in the most general case. However, further research will need to experiment with a 
variety of algorithms and heuristics in order to find those that can do this most efficiently for 
huge networks of rules. 
 Given such an abstract model of what an offer network can do, the next stage is to 
develop concrete strategies for implementing these abilities, supported by existing and 
emerging technologies. These strategies define a roadmap towards the creation of a planet-
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wide offer network. As this network becomes more intelligent, encompassing, and powerful, 
it will increasingly start to play the role of a Global Brain, i.e. a nervous system for the planet 
that would be able to tackle about all problems we are confronted with (Heylighen, 2015). 
The process is likely to require several decades before it can fully realize these promises. 
However, most of the steps we sketched can be initiated right now, using available 
technologies. 
 A first step, already partly achieved (Kleedorfer et al., 2014), is to develop a basic 
protocol and platform that allows the identification of users, their offers and their needs. A 
next step is to help these users formulate their offers and needs more precisely, so that they 
can be matched more effectively. This can be realized with the help of ontologies of concepts 
and their semantic relations. These allow disambiguating natural language expressions and 
suggesting more accurate categorizations and relevant attributes. Practically, this is likely to 
happen by integrating the offer network protocol with the protocols of the emerging Semantic 
Web—such as RDF or OWL. Another step that co-opts presently emerging technologies is an 
integration with the Internet of Things. This would allow humans to exchange offers and 
needs with physical objects.  
 The gradual incorporation of ontologies and related procedural and causal rules would 
provide the offer network with an extensive knowledge of the world. This would enable it to 
answer theoretical as well as practical questions. Most importantly, it would boost its ability 
to tackle complex problems that require abstract reasoning in combination with the provision 
of concrete resources. For example, the offer network should be able to aggregate the 
individual needs for health care in a particular town, induce the collective need for building a 
hospital, and decompose that need in the form of a detailed project listing the different 
human, physical and cognitive resources that in coordination would be able to satisfy the 
need. Thus, it could create an ad hoc organization just to tackle this particular problem, 
without need for the establishment of permanent institutions. 
 More generally, an intelligent offer network should be able to implement a form of 
adaptive and distributed governance that would mobilize people and resources to work for the 
benefit of humanity, while preventing harmful activities such as fraud, waste or pollution. 
This can be achieved in part by including laws, policies and ethical codes into the network in 
the form of condition-action rules, in part by adding criteria that prioritize the offers that are 
most beneficial to society, i.e. that have positive externalities.  
 Perhaps the most important externalities for long-term sustainability are the costs and 
benefits imposed on the planetary ecosystem. These are best addressed by including natural 
agents, such as forests, lakes or animal populations, and the reactions they take part in, into 
the offer network. Thus, the network would take into account the offers and needs of the full 
biosphere—and not just those of its human population—when trying to find a maximally self-
sustaining, synergetic organization.  
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 In order too implement such adaptive governance, the offer network would need more 
than “hard”, formal categories. To function efficiently, it would also need a variety of “soft” 
criteria that can be used to rank or prioritize options that match the hard criteria equally well. 
Some of these criteria will depend on the individual tastes and preferences of the user, as 
expressed explicitly, or implicitly through previous choices. Others, representing the 
preferences of people collectively, can be deduced from generalized reputation scores, where 
individuals, categories, rules and actions collect rewards proportionally to the degree to which 
they have satisfied the needs of society.  
 Since these scores are constantly updated, while being open to scrutiny, criticism and 
improvement, they cannot congeal into a rigid “utility function” that is vulnerable to 
manipulation and to the complexity of value problem (LessWrong, 2013; Yudkowsky, 2011). 
Moreover, the priority ordering derived from such scores will be highly context-dependent, as 
for example the same person will have a different reputation depending on what kind of offer 
she makes, or the same offers made to different people will be ordered differently depending 
on their personal preferences at this moment. 
 Implementing all these steps should eventually transform the offer network into a true 
Global Brain. Such a system would be able to answer any theoretical questions for which the 
knowledge is available, whilst simultaneously implementing and monitoring practical 
solutions for all the problems that confront individuals, society and the global ecosystem 
(Heylighen, 2015).  
 The creation of such a global problem-solving system may seem too ambitious to be 
realistic. Yet, the envisaged offer network protocol makes it achievable in principle. The 
reason is that offer networks are founded on a theoretical framework that does not a priori 
separate cognitive, physical, social, economic, legal, ecological and other problems 
(Heylighen, 2011; Heylighen et al., 2015)—unlike practically any existing framework. 
Instead, the offer network protocol considers all these issues as components of one huge 
distributed network of interdependent conditions and actions. Because all conditions and 
actions are linked through a single medium, this network can be analyzed by intelligent 
computer programs so as to find the most synergetic solutions. Given the tremendous on-
going progress in both hardware and software, it seems likely that such an intelligent system 
can be implemented on a planetary scale over the coming decades. 
 What makes tackling global challenges achievable in practice is the democratic and 
open-ended nature of the network. A protocol is a formally specified language for expressing 
and manipulating information. It does not prescribe which data, knowledge or values are to be 
expressed. Therefore, anyone can use it to express any need, any offer or any rule, or to assess 
the value of any proposed solution. The more people participate in this way, the richer the 
store of knowledge, values and resources the offer network can rely on, and the greater its 
distributed intelligence. The greater its intelligence, the more helpful it will be to people, and 



- 34 - 
 
 
 

the more these people will be inclined to use it, and thus add to its store of shared resources 
and collective wisdom.  
 This virtuous cycle is similar to the positive feedback that led to the explosive growth 
of the World-Wide Web (Berners-Lee & Fischetti, 1999). This growth was made possible by 
the formulation of a public protocol (HTML/HTTP/URL) that could be used to freely create 
content in a public medium (the Internet) in such a way that everybody could profit from it—
and this in a simple and flexible way, without needless technicalities or restrictions. The 
development of a universal and easy to use offer network protocol is likely to have a similarly 
revolutionary impact, but now going beyond the publication of information to the 
coordination of action. That should be sufficient to transform the World-Wide Web into a 
Global Brain, i.e. from a passive repository of knowledge to a system actively using that 
knowledge to solve any kind of problem. 
 A familiar criticism of this utopian vision is that people are too irrational, selfish, 
undisciplined or stupid to use something like an offer network protocol in an effective 
manner. This is the same kind of skeptical attitude that led many observers in the 1990’s to 
assume that the Internet and Web may be useful tools for scientists and technologists, but that 
no one could expect ordinary citizens to adopt such complex technologies. The same skeptics 
were convinced that an open system like Wikipedia, which invites everybody to write or edit 
texts on any subject, could never become a dependable encyclopedia. These skeptics 
overlooked a number of factors that are worth reviewing here, because these same factors can 
facilitate the realization of an offer network.  
 First, technologies that are initially formulated in a highly abstract, technical manner 
eventually get implemented in an intuitive, user-friendly manner, which requires minimal 
effort from their users. Second, when a system becomes truly useful, people become 
increasingly motivated to learn to use it in the most effective way, putting in the necessary 
time and effort to assimilate all the tips and tricks. Third, such usage eventually becomes part 
of general education—just like reading and writing evolved from highly technical activities 
performed by a small elite of experts to general skills expected from everybody. Finally, we 
already alluded to the virtuous cycle of stigmergy (Heylighen, 2007, 2016a): the partial 
products (such as an incomplete Wikipedia article) of some, when clearly expressed in a 
common medium, stimulate and guide others to add their own contributions. Thus, 
contributions build on top of contributions, generating an increasingly rich and sophisticated 
system in which everyone may eventually find what s/he needs, and where poor material is 
eventually replaced by better material.   
 An additional answer to the skeptics is that while offer networks will require people to 
change their habits and assimilate new and potentially complex forms of interactions, the kind 
of transactions demanded from them are not intrinsically more complicated than those of our 
present market economy, with its intricate systems of marketing and financing. This economic 
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system functions remarkably well, in spite of its complexity and the irrationality, selfishness, 
and “stupidity” of the people that participate in it. There is no reason why an offer network 
economy, which shares some characteristics with older forms of barter and gift economies 
and which uses self-organizing mechanisms at least as powerful as those of the market’s 
“invisible hand” (Goertzel, 2015; Heylighen, 2016b), should not be able to cope equally well 
with human limitations. 
 In conclusion, the roadmap towards a global system for coordination and problem 
solving sketched here will require years, if not decades, of hard work by an increasingly large 
group of contributors to be realized. The complexity of the envisaged result is such that at 
present we have many more question marks than answers about how the different stages are 
best implemented. However, this is a characteristic of all far-reaching socio-technological 
transitions. The global spread of systems such as the Internet, the World-Wide Web, 
Wikipedia, cellular networks, and the Google search engine shows that in spite of the 
complexity of the eventual implementation, truly good ideas can become a reality remarkably 
quickly. I believe that the offer network protocol—or some future version of it—is such an 
idea with world-changing potential. The coming years will tell us in how far the present 
roadmap presents a realistic scenario for its deployment… 
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