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ABSTRACT. Complexity is defined as the combination of distinction and connection. Analysing a
complex problem hence demands making the most adequate distinctions, taking into account connections
existing between them. The concept of closure in mathematics and cybernetics is reviewed. A generalized
formal concept is introduced by reformulating closure in a relational language based on connections. The
resulting "relational closure" allows to reduce low level, internal distinctions and to highlight high level,
external distinctions in a network of connections, thus diminishing the complexity of the description.

1. Complexity and Distinction-Making

Many attempts to define complexity in a precise way have already been carried out
(Serra, 1988), but none of them seems to cover all the aspects which we intuitively asso-
ciate with the concept of “complex”. All these definitions try to characterize complexity
in a quantitative way, as a kind of measure of difficulty. I think it is more important first
to understand complexity in a qualitative (but precise) way. Let us go back to the original
Latin word complexus, which signifies "entwined", "twisted together". This may be inter-
preted in the following way: in order to have a complex you need: 1) two or more distinct
parts; 2) these parts must in some way be connected, so that you cannot separate them
without destroying the complex (Heylighen, 1988b, 1989a,d). Intuitively then a system
would be more complex if more parts could be distinguished, and if more connections
between them existed.

This allow us to reduce the concept of complexity to two aspects: distinction and
connection. Distinction corresponds to variety, to heterogeneity, to the fact that different
parts of the complex behave differently. Connection corresponds to relational constraint,
to redundancy, to the fact that different parts are not independent, but that the knowledge
of one part allows to determine features of the other parts. Distinction leads in the limit to
disorder and entropy, connection leads to order and negentropy. Complexity can only
exist if both aspects are present: neither perfect disorder (which can be described statisti-
cally through the law of large numbers), nor perfect order (which can be described by
traditional deterministic methods) are really complex (Heylighen, 1988b). A provisional,
quantitative definition of complexity C might express this as the product of variety V (or
entropy, which corresponds roughly to the logarithm of variety) with redundancy R
(corresponding to the difference between actual variety or entropy, and maximum poten-
tial variety):

C = V. R     where  R = Vmax - V

C becomes zero in case of both maximum variety (V = Vmax) and minimum variety
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(V = 0), reaching a maximum when R = V. V is here a measure of distinction, R is a mea-
sure of connection. The problem with this definition is that distinction and connection are
in general not given, objective properties. E.g. in a thermodynamical context V might
stand for thermodynamical entropy, in the description of a strange attractor V might rep-
resent the fractal dimension, in a finite-state automaton V might be the number of distinct
states the machine can reach, etc. V (and R) will depend upon what is distinguished by the
observer, and in realistically complex systems (more complex than thermodynamical
systems) determining what to distinguish is a far from trivial matter. A complex system
consists of many levels, and typically what looks like variety on a micro-level may
behave like redundancy on a macro-level, and vice-versa (cf Heylighen, 1989a,c). In
practice the number of features or states which could be distinguished is infinite.

What the observer does is picking out those distinctions which are somehow the most
important, creating high-level classes of phenomena, and neglecting (assimilating) the
differences which exist between the members of those classes (cf Heylighen, 1989b,c,e;
Hobbs, 1985; Spencer Brown, 1969). The complexity of the description will depend on
how many distinctions the observer makes, and on how many connections exist between
these distinctions. A model with adequate complexity will be one which is complex
enough so that all the properties of the system relevant to the problem are included, yet
minimally complex so as to simplify the problem-solving process.

Which distinctions are made depends of course on the observer and the objectives he
has in mind while modelling the problem situation. However, I want to argue that distinc-
tion-making is not a purely subjective, irrational process, and that it is possible to formu-
late heuristical rules which can help the observer to make more adequate distinctions,
thus improving the complexity of his model. Ideally these rules could be formulated in a
more or less formal way, allowing to implement them in a computer support system
(Heylighen, 1989d,f). In this paper I want to attempt to define these rules mathematically,
by introducing the concept of relational closure.

2. Definitions of Closure

The word “closure” is used often in mathematics as well as in cybernetics. In mathemat-
ics closure can be defined as an operation C on sets, C: A → A*, with the following prop-
erties:

1) A ⊆  A* (monotonicity)
2) (A*)* = A* (idempotence)
3) A ⊆ B  ⇒  A* ⊆  B* (inclusion preservation)

A set A is called closed if A* = A. Intuitively such a closure of a set means that somehow
“missing elements” are added to it, until no more of them are needed. For example, in
topology, if you want to “close” an open set, you must add the boundary to the set itself.
However, the general definition does not tell us what would be missing, or when we
should stop adding elements.

In cybernetics, a system is said to be organizationally closed if its internal processes
produce its own organization, thus continuously rebuilding the system's identity in a
changing environment. The connotation is that of a cyclical, self-referential, self-produc-
ing process. This concept is often used in a rather vague, not very well-defined sense, and
the typical examples (biological and cognitive systems) are so complex that it is difficult
to generalize their features to systems from another domain, though there have been at-
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tempts to formalize the concept in a more restricted context (cf Varela, 1979). At first
sight there is little connection with the mathematical concept defined above, but one con-
nection can be found via the concept of the closure of an algebraic system of transforma-
tions (cfr. Ashby, 1964). Consider a set A, and a set F of transformations on A, then the
system (A, F) is closed if the composition of elements of F is again an element of F, and
if each transformation of F sends A into A:

∀ f, g ∈ F: f • g ∈ F,  and,  ∀ a ∈ A, ∀ f ∈ F: f(a) ∈ A
If A represents the state space of a system, and F its dynamical processes, then the closure
of the system means that the state space is invariant under the internal dynamics. Closing
(A, F) means adding all the compositions of elements of F to F, and adding all images of
elements of A under transformations of F to A. F and A can thus be defined recursively:
given a few starting elements Fo for F, and given a few starting elements Ao for A, all the
other elements can be generated:

 i)  ∀ f ∈ Fo : f ∈ F,           ii)  f ∈ F, g ∈ F ⇒  f • g ∈ F.
 i’) ∀ a ∈ Ao : a ∈ A,   ii’) f ∈ F,  a ∈ A  ⇒  f(a) ∈ A.

The system (A, F) is organizationally closed in the sense that its organization, defined by
the set A and the algebra F (with composition as binary operation), is maintained (or
(re)produced) under the application of its internal processes, defined by the transforma-
tions f ∈ F.

What is the relation between this type of closure and the concept of distinction?
Closure allows to make a more sharp separation between the inside of a system and its
“outside” or environment. Indeed, A can be considered as the closure of some Ao ⊂ A:
Ao* = A, equivalently: Fo* = F. What we achieve by adding the “missing elements” to
(Ao, Fo) is that all internal processes “stay within the system”, they can no longer produce
elements outside of it, e.g. for a ∈ Ao, ∃ f ∈ Fo such that f(a) ∉ Ao, yet f(a) ∈ A. In the
“open” system (Ao, Fo) it is possible to transgress the boundary between inside and out-
side, in the closed system (A, F) it is not. Hence this “boundary” becomes an important
feature, which allows to distinguish the system (A, F) from its environment in a meaning-
ful way, rather than by an arbitrary convention, such as the one which distinguishes the
elements of the set Ao from all those elements which do not belong to Ao.

This concept of algebraic closure of a transformation system illustrates some of the
important features of the concept we are looking for, but it is not general enough for the
task of modelling complex systems by picking out all the relevant distinctions. For exam-
ple, it does not give any clear understanding of "connection" as an essential feature of
complexity. We might say that the elements of (A, F) are somehow connected together,
but it is not clear how they are connected to the outside, and it is also not clear why A and
F are a priori separated structures, which are only connected in a second level construc-
tion. Let us therefore abstract out the aspects of distinction and connection and define
closure in a different way.

Intuitively, the idea of a closed system as one which you cannot leave or enter from
the outside may be generalized to a system whose inside elements cannot be individually
distinguished from the outside, though the inside as a whole can be distinguished from
the outside. In other words the inside-outside distinction becomes more important, more
invariant, since it can be perceived from all points of view, while the distinction between
the inside elements, can only be perceived from the inside itself. Hence closure would be
a means of "high-lighting" or singling out one distinction between elements of a class
(e.g. a1 ∈ A) and its complement (e.g. b1 ∉ A), while ignoring other distinctions (e.g. the
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one between a1 ∈ A and a2 ∈ A), thus preferring class A to any other subclass (e.g. Ao)
of the whole of all elements under consideration. The simplest way to formulate this
mathematically is by means of an equivalence relation E, expressing the "lack of external
distinction" between the elements of A:

∀ a1, a2 ∈ A: a1 E a2,  but  ∀ a ∈ A, ∀ b ∉ A: not (a1 E a2).

The "closed" set A is then merely an equivalence class of the relation E, and the distinc-
tions induced by closure correspond to the partitioning of the initial "universe of dis-
course" U by E. However, this reduction of closure to equivalence is rather trivial, since
equivalence is about the simplest structure one can imagine, so that much of the proper-
ties the closed system (A, F) originally had were lost by going to the system (A, E).
Indeed, we can make a derivation in one direction:

∀ a ∈ A, ∀ f ∈ F: f(a) = b  ⇒  a E b,

but not in the inverse direction. In other words, E provides much less information about
the structure of the system than F. (A, E) is a kind of limit case of a closure where all dif-
ferences or asymmetries which still exist in the system (A, F) between a and b or between
f1 and f2 ∈ F are erased. For example, define the relation E':

∀ a, b ∈ U: a E' b ⇔ ∃ f ∈ F such that f(a) = b.

The relation E' is in general not symmetric, though it is transitive because F is closed un-
der composition. E' is hence not an equivalence relation like E. This means that a and b
are in general not equivalent, since it is possible to transform a into b, but perhaps not to
transform b into a. What we would like is to characterize closure in a way which is sim-
pler than by means of the algebra F, yet gives more structural information than the
equivalence relation E. Therefore we may go back to the concept of connection as a basis
to form relations.

3. Closure in a Relational Language

Instead of starting from a set A together with an algebra F of transformations, we may
start from a single set S = {α, β, γ, ...} of "connections", meaning elements which are
only defined by the other elements they are connected to. Connections can be represented
by means of a directed graph consisting of nodes (similar to the elements of the set A)
and arrows (similar to transformations in F mapping elements of A onto elements of A)
connecting the nodes. Yet the nodes can also be viewed as connections between the ar-
rows, so that at the lowest level there is no real distinction between "node"-elements and
"arrow"-elements. The principle is analogous to category theory, where both morphisms
(corresponding to arrows) and objects (corresponding to nodes) can be considered from
the "arrow only" viewpoint, where objects are merely a special kind of (identity) mor-
phisms.

The connection between elements can be represented by a relation " → ": α → β, but in
such a way that a connection can always be instantiated by a "node" or "connecting
element" γ: α → β  ⇒  ∃ γ such that α → γ, γ → β. The inverse implication is only true if
there is no branching between α and γ, i.e. if there is no δ such that α → δ, but not δ → γ,
nor γ → δ (and equivalently no branching between γ and β).

The rationale for this "relational" or "structural" language (Heylighen, 1989g) is to
have a representation system without primitive level, i.e. a level consisting of the ele-
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ments out of which all the other elements or structures are generated. The system is boot-
strapping: each element is determined by the other elements. This can be expressed for-
mally by introducing the input (I) and output (O) sets of an element:

I [α] = { γ ∈ S | γ → α }, and  O [α] = { γ ∈ S | α → γ }
α is then completely determined or defined by ( I[α], O[α] ):

∀ α, β ∈ S: ( I[α], O[α] ) = ( I[β], O[β] ) ⇒  α = β. 
This axiom allows us to formulate a simple relationship between distinction and connec-
tion: two elements α and β are distinct if and only if they are connected to distinct ele-
ments. This definition is "bootstrapping" because the distinct elements in I[α] and I[β] are
of course themselves only distinguished by virtue of their own connections with distinct
elements, including the original α and β.Ιt is not recursive in the conventional sense, be-
cause there is no privileged, starting set So whose elements are used to generate the dis-
tinctions between the other elements. Remark also that the axiom implies that elements
with empty input and output sets (i.e. independent, disconnected elements) cannot be dis-
tinguished at all.

The philosophy behind this definition can be expressed through the principle of the
"identity of the indiscernibles", where indiscernability is interpreted relationally, namely
that you can only discern something by relating it to something else. Operationally it
means that you cannot observe or measure some property without letting the system you
observe interact with some other system (your measuring instrument) and comparing the
results of that interaction with other results (your standards).

The postulated identity of α and β is of course just a special case of an equivalence
relation, and in this sense the fact that α and β are "taken together in one class" is a kind
of primitive closure operation, defining distinctions of the lowest order. What we are re-
ally interested in, however, is a criterion for determining higher-order distinctions on the
basis of lower-order ones. That is to say, given a set of distinct connections A = {α, β, γ,
δ, ...} we would like to derive another, smaller or simpler set of connections which could
replace the first one, without any loss of relevant information. What allows us to do this
is that A does not consist of independent elements, but of elements in relation, that is to
say that there is in general some kind of constraint or redundancy involved. The question
is just to "filter out" this redundancy so that what is left is maximally simplified. The dif-
ficulty is that there are many different kinds of redundancy, and so it appears very diffi-
cult to formulate a procedure which could handle them all. By generalizing the concept of
closure as it was used until now to this relational language, we may hope to find such a
generic method.

The set A can be represented as a relation on a set of nodes. If this relation is transitive
and symmetric, then it defines an equivalence relation partitioning the nodes into distinct
subclasses. This is the most "perfect" kind of closure we could imagine. By weakening
the requirements defining an equivalence class, we may try to generate "less perfect"
types of closure, which, however, still determine essential redundancies. Obvious candi-
dates are relations which are just transitively closed, but not symmetrically, or vice-versa.

A symmetric relation A is characterized by the fact that for every connection β there is
an inverse connection β-1. In principle, in order to characterize A it suffices to give a set
Ao containing all the one-way connections β of A, and to state that A is the symmetric
closure of Ao: Ao* = A. It is not necessary to give all the inverse connections β-1, they are
redundant once you know that A is symmetrically closed, they constitute the "missing
elements" which are automatically added to A by the closure operation. In the same way,
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a transitive relation is characterized by the fact that for each two connections in series
(forming a "path" of arrows), there is one parallel connection, with the same input as the
first one of the series and the same output as the second one of the series. Once you know
that the relation is transitively closed, the parallel connection becomes redundant, it is no
longer necessary to mention it explicitly.

These two examples may be generalized, letting the following picture emerge: rela-
tional closure in a network S of connections means that a subnetwork or subrelation
A ⊂ S contains all the connections which "complement" the connections in some non-
closed subset Ao ⊂ A, so that the knowledge of Ao, together with the closure operation,
determines A completely. Moreover, the closure of A signifies that the internal structure
of A becomes "less distinct", in the sense that it is no longer necessary to explicitly make
certain distinctions. For example, if A is symmetrically closed, it is not necessary to
distinguish between a closure in one direction and a closure in the inverse direction, since
you know that once you have the one, you automatically have the other one. In a
transitively closed network, you do not have to distinguish between a simple connection
and a "path" of subsequent connections, because each path has an associated simple
connection. Because of the "diminished internal distinguishability", the closed network as
a whole will be more sharply distinguished from its background or environment, thus
forming a "gestalt" (Heylighen, 1988b, 1989d).

A few remarks should be added to this provisional definition. First, like we noted
when formulating the fundamental axiom of the relational language, the absence of all
possible connections is similar to the presence of all possible connections: both determine
an equivalence relation preventing to make any distinction. Analogously, the absence of a
certain type of connections (e.g. inverse connections) will have a similar, distinction-
reducing effect as the presence of all connections of that type. E.g. it is similarly needless
to distinguish between both directions in an antisymmetric relation since by definition
only one direction exists for each connection. This means that the complement of a clo-
sure (in the sense of complete absence of the missing elements, not in the sense of in-
complete presence) can in general also be interpreted as a closure. For example, you
might define "antitransitive" closure as the fact that no path has a corresponding connec-
tion.

Second, the "type" of connections which are present or absent may be defined by what
they are connected to, hence depends upon the "point of view" from which distinctions
are made. For example, consider the connections α, β defined by:

O[α] = {γ}, I[α] = {δ, ε};  O[β] = {γ}, I[β] = {σ, λ},

then α and β are "absolutely" distinct, but indistinguishable from the point of view of
their input γ alone. The set {α, β} is closed with respect to γ. Third, different types of clo-
sure may be recursively combined, generating other types of closure. For example, transi-
tive and symmetric closure together define equivalence closure. Fourth, certain types of
closure may be seen as generalizations or specializations of other types of closure, in the
sense that a more general closure is characterized by less strict requirements, and hence is
less distinction-reducing or redundancy-generating. For example, a symmetric closure is a
specialization of a cyclical closure, defined as a connection network, where each connec-
tion α has an inverse path of connections { β, γ, ..., ζ | α → β, β → γ, ..., ζ →  α}, forming
a cycle leading back to the starting connection. The associated distinction-reduction is
that which makes it impossible to distinguish whether a connection in a cyclically closed
network comes "before" or "after" another one.

We may conclude that the number of closures which may be conceived in a network of
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connections is virtually unlimited. Starting from a few elementary closures, new closure
types can be generated by specialization, generalization, complementation, combination
and restriction of point of view. Although this can as yet not be proven formally, it seems
as though all essential mathematical structures, such as partitions, (partial or linear)
orderings, functions, hierarchies, symmetries, ..., can be reconstructed as combinations of
elementary closures. This richness of possibilities is formidable indeed, but the question
is whether we have not obtained the opposite of what we wanted, namely a method for
reducing the complexity of a problem. It seems as though the decisions about which clo-
sure operation to apply may even be more difficult than the decisions about which of the
originally specified alternatives to choose.

Yet the criteria for preferring one closure above another one seem intuitively clear.
The closure we will choose will be the one which eliminates the maximum of distinc-
tions. Hence we will prefer more specialized closures (e.g. equivalence) to more general
ones (e.g. cyclical closure), and large ones (involving large sets of connections) to small
ones. As to the point of view, this is determined by the objective one has in mind while
solving the problem. In a problem representation, distinctions can be ordered hierarchi-
cally (Heylighen, 1988a, 1989b) in a sequence leading from ends to means. The distinc-
tions higher in the hierarchy will determine the privileged point of view from which
lower-order structures may or may not be distinguished. For example, it is useless to dis-
tinguish between means which have the same effect on the ends one tries to achieve.

What remains to be done is to develop a practical method, to be implemented as a
heuristical algorithm, for searching potential closures in a connection network, starting
with the ones with the largest potential for complexity reduction, and to clearly specify
the meaning of the emerging higher-order distinctions (Heylighen, 1989c,f). The problem
of how to formulate a complex problem as a network of connections, and how closure can
support complexity reduction and knowledge elicitation has been discussed in
(Heylighen, 1989f).
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