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ABSTRACT. A general problem in all systems to process language
(parsing, translating, etc.) is ambiguity: words have many, fuzzily defined
meanings, and meanings shift with the context. This may be tackled by
quantifying the connotative or associative meaning, which can be
represented as a matrix of mutual association strengths. With many
thousands of words, there are billions of possible associations, though, and
there is no obvious method to measure all of them. This "knowledge
acquisition bottleneck" can be tackled by mining implicit associations
from the billions of documents and millions of users on the World-Wide
Web. The present paper discusses two methods to achieve this: lexical
co-occurrence, a measurement of the frequency with which words appear
in each other's neighborhood, and web learning algorithms, an application
of the Hebbian rule to create associations between subsequently
"activated" words or pages. The mechanism of spreading activation can
be applied to the resulting associative networks for clustering, context-
driven disambiguation, and personalized recommendation. A
generalization of such methods could transform the web into a "global
brain", that is, an intelligent, learning network that assimilates the
implicit knowledge and preferences of its users.

1. Introduction

In the present invited paper, I wish to look at future, rather than existing, language
technologies. I will review some fundamental problems that confront all computer
systems for processing language, and, with reference to some recent studies,
demonstrate methods to tackle them. While these approaches appear capable of solving
the problem in principle, it will, however, still require a lot of work to transform these
general principles into reliable applications. Therefore, the focus of this paper will be
conceptual rather than practical, attempting to explain the thinking behind some
technological trends that are likely to become important in the next few years.

Perhaps the most fundamental problem in language processing is ambiguity. Words,
phrases and sentences can have many different meanings, and these meanings shift with
the context [Heylighen & Dewaele in press]. People have usually little difficulty in
grasping the right meaning. Computer programs, on the other hand, are easily confused,
and tend to interpret a language fragment in one way, when it should have been
interpreted in another way. This problem of disambiguation recurs in the most diverse
domains [Ide & Véronis 1998]: parsing (the same word can have different grammatical
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roles depending on its meaning), speech recognition (similar sounding words may
actually be different), information retrieval (search words may refer to very different
subjects), natural language comprehension (a command given to a computer can be
misinterpreted), and content analysis.

The ambiguity problem was perhaps recognized most early in machine translation
[Bar-Hillel 1960]. In spite of the great advances in computer technology and in Artificial
Intelligence (AI), reliable translations still require human involvement. Yet, in the
1950’s, when the first AI programs were developed, it all seemed simple: for every
word in the source language you need to find the equivalent in the target language, using
a correspondence list similar to a translating dictionary. The only thing more you would
need is a program that understands enough of syntax to put the words in the right order.
Anybody who has done any translation work knows that things are not that easy. The
same word can mean many different things, depending on the phrase, the sentence, or
even the document in which it appears, and each meaning requires a different translation.

Further developments in AI have learned that lesson, gradually taking into account
more and more about the context and even the complete world-view or model that a
language user keeps in mind when interpreting a sentence. For example, consider the
sentence: “He saw the seagulls sitting on the bank”. Although the most common
meaning for bank is "financial institution", it is obvious from the sentence that here we
should interpret it in the much less common sense of "edge of a river". An AI program
that knows about seagulls should be able to deduce that these birds rarely sit on financial
institutions, but frequently do sit on river edges. But this is a specialized knowledge
about concrete aspects of the world, which cannot be found in grammars or dictionaries.
Thus, for a computer program to correctly interpret a phrase, you need more than
purely lexical or grammatical knowledge, you need to have an understanding of the world
in general, and of the subject of the language excerpt in particular. For that reason, the
problem of word disambiguation has been called "AI-complete", i.e. solving it would
require solving all outstanding deep problems of artificial intelligence [Ide & Véronis
1998].

The difficulty is that even the basic knowledge we all use in our everyday actions is
huge, complex, and difficult to formulate explicitly. The most ambitious attempt to date
to codify this common sense knowledge in a computer system is the CYC project, a
team of hundreds of people led by AI pioneer Douglas Lenat [Lenat & Guha 1990]. Yet,
in spite of thousands of man-years of effort, the CYC project still has not achieved its
aims. The core of the problem is what AI researchers call the “knowledge acquisition
bottleneck”. Present-day computers can easily manipulate millions of stored data items.
The human brain too stores and processes millions of data without effort. The
difficulty, however, is to transfer this knowledge from a brain into a computer.

This transfer is hampered by the completely different way in which brains and
computers store data [Heylighen 1991]. Humans develop knowledge by repeatedly
experiencing phenomena together, thus learning associations between the concepts that
represent these co-occurring phenomena. Computers must receive their knowledge in the
form of explicit, formal statements, consisting of discrete symbols. Human learning goes
on continuously since birth, most of the time without noticeable effort. For a person to
formulate a piece of knowledge in the form of a proposition that can be understood by a
computer, on the other hand, requires quite some effort, since fuzzy, implicit
impressions must be converted to unambiguous, logical truths. Moreover, most of our
intuitive, associative knowledge cannot even be expressed in the form of logical
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propositions. For example, how would you produce a proposition expressing the fact
that, in your experience, seagulls are more at home around rivers than around financial
institutions? Categorical rules such as “if a bird is a seagull, then it is situated near a
river” or “if a bird is situated near a financial institution, then it is not a seagull” are
obviously in many cases incorrect.

An apparent alternative might be to formulate a statistical rule, expressing the
probability that you would find a seagull in a given situation. But the problem then is
how to determine the probability value: it seems rather pointless to collect statistics
about the number of seagulls sitting on financial institutions or on river edges. Perhaps
you could still gather a reasonable statistic if you only needed to know the relation
between seagulls and rivers. But what about the billions of other possible associations
that you would encounter when trying to interpret any natural language fragment? What
about the probability of finding a penguin near to ice? Or how likely is it to find a
grandmother in a financial institution? Associations are not probabilities: they are much
more fluid, subjective, and difficult to grasp.

Does this mean that computers will forever remain far behind humans in their
capacity for understanding natural language? The message I wish to convey in this paper
is more optimistic: it is possible to represent intuitive, associative knowledge in a
computer, and the knowledge acquisition bottleneck can be overcome. First, I will show
how associative meanings can be modelled mathematically. Then, I will discuss different
techniques through which the enormous reservoir of information available through the
World-Wide Web can be “mined” to extract such associations [cf. Bollen, Van de Sompel
& Rocha 1999]. I will finally suggest some possible approaches to use the thus acquired
knowledge in order to tackle problems such as word disambiguation.

2. Representing associative meaning

According to the most traditional view of language or representation, the meaning of a
word corresponds to the thing or category of things that the word stands for. For
example, the word “seagull” stands for, or denotes, a particular group of birds. This may
be called the denotative meaning or denotation of the word. In logic, this type of meaning
is usually called the extension of a symbol. One difficulty with this approach is that the
underlying theory of knowledge, where concepts or symbols are supposed to reflect
outside entities, runs into a host of philosophical problems [Heylighen in press]. A
more practical difficulty is that language interpreters, whether humans or machines, in
general do not have access to the external objects that the words are supposed to denote.
Therefore, the denotative view of meaning is of little help in determining what a word
refers to.

When working with texts, we generally only have access to words, not to things.
Therefore, it would be better if we could determine the meaning of a word only by using
its relations to other words. Let us call this second type of meaning connotation.
According to the [American Heritage Dictionary 1996], connotation can be defined as:

An idea or meaning suggested by or associated with a word or thing. The set of
associative implications constituting the general sense of a word in addition to its
literal sense. Logic: the set of attributes constituting the meaning of a term;
intension.
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The problem now is to determine connotation in such a way that it could be embedded
in a computer program, allowing that program to correctly interpret a word in a given
context, taking into account all the different meanings or associations that same word can
have. Let us begin by defining word connotation more precisely as: the whole of
associations a word has with other words.

An association can then be expressed as a relation between any two words or
concepts with a strength varying between, e.g., 0 and 1. An association of 1 between
two words would mean that, whenever we encounter the one word, we are immediately
and unequivocally reminded of the other word. This seems like an extreme case, that,
perhaps may only be encountered with two of the purest synonyms. A more common
association of 0, on the other hand, would mean that given the one word, we would not
in any way be predisposed to think of the other word, although the words need not be
mutually contradictory or incompatible. Association 0 would simply mean that two
words are independent, like seagull and financial institution. Encountering the word
seagull does not exclude us from thinking about financial institution. It is just that, if you
want to make somebody think about a financial institution, the clue seagull would be of
no help whatsoever. Seagull and river, on the other hand, do have a positive association,
although it may not be particularly strong. Cat and mouse, or mouse and cheese, are
examples of stronger associations. The (transitive) association between cat and cheese
would be quite weak, on the other hand.

Associations are in general not reversible or symmetric. Mouse may remind you
strongly of cheese, but cheese has a much weaker association with mouse. Thus, the
association mouse → cheese might have strength 0.5, whereas cheese → mouse might
only score 0.2. Note that the absolute value of an association is not so important, but
only its value relative to other associations. Thus, a score of 50 % for mouse → cheese
will not mean much on its own, but the fact that this score is significantly larger than the
10% score for mouse → meat is significant. It means that if you get a sentence of the
form The mouse ate the X, where X is an ambiguous word that you have difficulty
interpreting, then, out of two possible interpretations, cheese and meat, you will be
strongly inclined to choose the former.

The list of all possible associations between words in a language can be represented
as a matrix A = (aij), where aij is the strength of association going from word wi to word
wj. The connotation or associative meaning of a word wi can then be represented by the
list of all associations wi has with other words: (ai1, ai2, ai3, ... ain). This is the i-th row
vector of the association matrix A. Thus, every word can be represented by a list, or
vector, with n components, where n is the total number of words in the language or
corpus. This vector situates the word as a point in an n-dimensional semantic space of
possible meanings [cf. Burgess 1998].

Note that the meaning of a word is thus expressed by the whole of its associative
relations with other words. These words too have their meaning defined by their
relations with further words, including the word we started with. Thus, meaning is
determined in a bootstrapping way: there are no semantic primitives, there is no
independent “ground” or “foundation” by which meaning is supported; instead,
meanings mutually determine each other. Although this may seem circular,
bootstrapping methodologies allow us to recover various basic structures in knowledge
and language [Heylighen in press; Finch & Chater 1992; Cairns et al. 1997], as we will
illustrate when we discuss clustering.
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3. Measuring associations

If associations can be expressed by numbers, the next question is how to measure them.
One obvious method is by submitting a questionnaire to a group of subjects. The
questionnaire lists different possible associations, such as mouse → cheese, mouse →
cat, cat → cheese, etc., each followed by a list of possible association strengths, e.g. 0% -
20% - 40% - 60% - 80% - 100%. You then ask the subjects to circle the number that
corresponds best to what they intuitively perceive as the degree of association. Instead
of numbers, you could also use qualitative estimates such as “not at all” - “a little” -
“moderately” - “strongly” - “completely”, or a graphical ruler or line on which subjects
could indicate their estimate of strength. The exact manner does not matter that much,
since there would anyway be much individual variation between the subjects, and the
only significant result would be the average score over a sufficiently large group of
subjects.

Although this method may work well if you need only a few associations, it is
obviously impractical if you need to establish all connotative meanings in a realistic
language sample. Suppose that your lexicon contains 10,000 words, then you would
need to determine 100,000,000 association strengths. A computer may have little
difficulty storing and processing such large numbers, but no human volunteer would be
willing to score millions of cross-associations. Here, we are again confronted with the
knowledge acquisition bottleneck. The problem becomes somewhat less daunting if we
note that most associations will have strength 0, because the corresponding words are
basically independent: the association matrix is "sparse". Thus, instead of comparing all
possible couples of words, we could limit ourselves to those cases where there is a
straightforward association.

3.1. Word association norms

A well-known method to do this is the psychological technique of free association. The
observer proposes a word to the subject, who responds with the first word that comes
up in his or her mind. For example, when the observer says “mouse”, the subject
answers “cheese”, “Mickey”, or “cat”. The same words are presented to a large group of
subjects, and the responses are collected for each word. From the list of responses, all
the words that were proposed by only one person are eliminated, as these are likely to
be idiosyncratic associations that have meaning only for this particular subject. The
words that appear more than a minimum number of times are counted, and receive an
association strength proportional to the number of times they were uttered. This
method has been used to determine so-called “word association norms” for the most
common English words [Palermo & Jenkins 1964; Moss & Older 1996; Nelson,
McEvoy & Schreiber 1998]. Some example results can be found in Table 1.
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cue word association association
strength

seagull bird 0.480
beach 0.209
ocean 0.041
shit 0.020
fish 0.014
fly 0.014
pest 0.014
sea 0.014
water 0.014
white 0.014

confess tell 0.232
admit 0.119
church 0.086
sin 0.053
deny 0.046
lie 0.046
truth 0.046

Table 1: word association norms for the words seagull (complete) and confess (top half),
excerpted from [Nelson, McEvoy & Schreiber 1998]. The association strength represents
the proportion (e.g. 48 %) for a particular association (e.g. bird) on the total of all
associations produced (e.g. bird, beach, ..., white) in response to the cue word (seagull)

One problem with this methodology is that since users are prodded to react quickly,
without thinking about degrees of relatedness between words, they often produce words
that are associated only superficially, e.g. because they rhyme, sound similar, or are part
of a common collocation (e.g. Mickey Mouse). A more serious problem is that this
method only recovers the dozen or so most salient associations for any given word,
while ignoring the weaker, but still significant ones. For example, there exists a weak
association between mouse and dog as these are both mammals that live with people,
and thus are more likely to be encountered in the same context than two randomly
chosen words, such as mouse and bank. Yet, it is quite unlikely that someone would
respond dog when prodded with mouse.

The problem remains that directly eliciting all possibly relevant associations from
human subjects requires an inordinate amount of effort. This problem could be evaded if
we could somehow automate the process, and let the computer measure associations.
Yet, associations originate in the human mind, to which the computer does not have
direct access. Still, associations do not remain hidden in the depths of our brain: they
show up in the way we use language. What remains to be done then, is to find a
sufficiently rich source of data on language use, and to develop an efficient method to
extract associations from those data. Thanks to the explosive development of network
technologies, the data source is at hand: the World-Wide Web. The web presently
contains billions of natural language documents. These documents are being used every
day by hundreds of millions of people, who apply their implicit knowledge of the



7 HEYLIGHEN

language to interpret the meaning of these documents, and to decide about their further
actions in the web. I will now discuss two methods to mine this abundant resource, one
using the static structures of texts, another one using the dynamic choices made by
people.

3.2. Lexical co-occurrence

A simple way to estimate the degree of association consists in counting how often two
words appear together, in the same document or in the same phrase. The assumption is
that if language users often hear or read two words together, then these words will
become associated in their minds, and they will in turn tend to use these words together
in their speaking and writing. For example a text about mice is more likely to contain the
word cheese than the word meat. [Spence & Owens 1990] and [Wettler & Rapp 1993]
have confirmed that such lexical co-occurrence correlates with association strength, as
derived from word association norms.

Just counting the frequency with which words appear is not sufficient, though, as
some words are very frequent (e.g. the word the) and will appear in a very large number
of language fragments, while others (e.g. Antarctica) are quite rare, but will still be
strongly associated with other rare words (e.g. penguin), and therefore frequently occur
in the same documents. One solution is to calculate the association strength from word
wi to word wj as the conditional probability that you would find word wj, given a text
that contains word wi :

aij = P(w j | wi) =
P(wi& w j)

P(wi )
=

N(wi& w j)

N(wi )

P(wj ) stands here for the probability that a text would contain word wj , P(wi & wj ) for
the probability that it would contain both wi and wj , N(wi) for the total number of texts
in the sample that contain wi, and N(wi & wj ) for the total number of texts that contain
both wi and wj . A related, commonly used formula is (pointwise) mutual information
[Church & Hanks 1990], but this has the limitation that the results are necessarily
symmetric in i and j:

′ a ij = log
P(wi & wj )

P(wi).P(w j )

To calculate such association strength between any pair of words, it is sufficient to
count how many documents contain any single word in the list, and how many
documents contain any pair of words. This is automatically done by the kind of “web
robots” used to build search engines, that download large numbers of web pages, and
index their lexical content. In fact, when you enter a particular word or conjunction of
words in a search engine, you usually get an estimate of the number of documents that
contain either the word or the conjunction, and that is all the data you need to build an
extensive association matrix. To test this approach, I entered some word combinations
in the Google search engine, and using the conditional probability formula on the number
of results I calculated the associations in table 2. Note that the association from penguin
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to ice is much stronger than the one from ice to penguin, as you would expect. This
asymmetry would not be recovered with a mutual information measure.

cue word association association
strength

penguin  fish 0.067
 ice 0.066
 sand 0.009

ice  penguin 0.010

Table 2: some association strengths calculated from co-occurrence statistics given by a web
search engine.

This method is still quite coarse, since common words (e.g. person, information, time)
will not only occur, but co-occur, in many documents (especially long documents),
leading you to conclude that they have a strong association. A more refined measure
would take into account how far apart the words are in the document. This can be done
using a “sliding window” that lists a certain number (e.g. 10) of consecutive words in a
document. If two words co-occur in this list, they are considered to be associated,
otherwise not. The “window” moves word by word through the document, e.g. first
listing words 1 to 10, then words 2 to 11, then 3 to 12, etc., until the last word of the
document has been reached, after which the process starts anew with the next document.
The same formula as above can be used except that N now stands for the number of
windows, rather than the number of documents, in which a word or conjunction of
words appears. If both the collection of documents and the window are large enough,
then infrequent, but associated words, will still regularly appear together. For example,
penguin and Antarctica will co-occur in phrases such as “penguins, who live in
Antarctica” or “... like to visit Antarctica and see the penguins”. On the other hand,
words that are common but not specifically associated, such as person and information,
will not co-occur in a large number of windows relative to the total number of their
occurrences, and therefore not get strong associations.

A remaining problem is to determine the optimal window size. When word co-
occurrences are used to disambiguate meanings (e.g. the occurrence of money together
with bank indicates that the latter should be interpreted in its "financial institution"
sense), the best results seem to be produced when the window size is not too large [Ide
& Véronis 1998], since words further apart from the target word may have no real
association with it, and thus obscure the results. The problem is that different authors
tend to find different optimal window sizes, which is understandable since there is no
clear separation between the neighboring words that are strongly associated and those
that are not. The method could be further refined by taking into account the variable
distance between co-occurring words, so that words that appear closer together would
receiver stronger associations than words that are farther apart. This has been applied
e.g. by [Burgess 1998, Burgess et al. in press], who gave word co-occurrences a weight
decreasing in step with the number of intervening words: e.g. adjacent words would get
weight 5, words separated by 2 words weight 3, words separated by 5 or more words
weight 0.
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Inspired by our understanding of brain mechanisms, I would suggest a somewhat
more sophisticated approach. A simple mathematical model would be to let the degree
of association decrease exponentially (rather than linearly) with the number of separating
words. For example, with one word separation half of the activation might remain, with
two words a quarter, and with three words one eight. This can be motivated by the
hypothesis that, for words held in short term memory, activation decays at a constant
rate: with every time step, a fixed percentage of the activation is lost through diffusion,
so that activation gradually "evaporates" until practically nothing is left. Thus, when a
person hears the word river and two minutes later the word bank not enough memory
of the former would be left to create a strong association with the latter, but a little
association may still survive. To simplify computations, once weight has gone below a
certain low threshold (e.g. 2%) it may be set to zero. This maintains a finite window
size, even though the exponential decay approach allows us to use much larger windows
without losing the reliability of associations.

It is worth noting that, in order to derive good associations from word co-
occurrence, we really need the very large language samples that are found most easily on
the web (10 million words as a minimum, according to [Rapp & Wettler 1991]). For
example, the group of [Burgess 1998, Burgess et al. in press] used a 300 million word
corpus gathered from Usenet discussions as input, to calculate all co-occurrence
strengths between 70,000 distinct words. On the other hand, [Ide & Véronis 1998]
observe that the traditionally used Brown corpus, which consists of one million words,
is far too small to provide reliable co-occurrences: "in a window of five words to each
side of the word ash in the Brown corpus, commonly associated words such as fire,
cigar, volcano, etc. do not appear. The words cigarette and tobacco co-occur with ash
only once, with the same frequency as [unrelated] words such as room, bubble, and
house."

3.3. Deriving associations from user choices

Counting word co-occurrences in texts still provides only an indirect estimate of the
associative meaning that people carry in their head. Although we cannot ask people to
express all possible associations one-by-one, we might perhaps program a computer to
learn these associations from their users in the same way that the users themselves have
learned them, that is, by experience rather than by explicit instruction. Learning in the
brain follows the rule of Hebb [Hebb 1967]: if two phenomena are experienced in close
succession, the association between the concepts representing these phenomena is
reinforced. If two associated concepts are not experienced together, their association
gradually weakens. Thus, concepts that are frequently encountered together become
strongly associated, while concepts that are rarely encountered together become weakly
associated. If we look more closely at the underlying physiological mechanisms in the
brain, we see that neurons (“concepts”) that are activated (“experienced”) in close
succession develop a stronger synaptic connection (“association”). Moreover, this
strengthening depends on the time interval between activation: short or zero intervals
produce more reinforcement than longer intervals.

My co-worker Johan Bollen and I have used this principle to develop a self-learning
web of associations between words [Bollen & Heylighen 1996, 1998; Heylighen 1999].
For our experiment, we selected the 150 most frequent nouns in the English language
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(according to the LOB corpus). To start up the associative network, we created a 150 x
150 matrix of cross-associations, initialized with small, random association strengths for
each entry. For each word in the corpus, we then selected the 10 most strongly
associated words, showing them to the users of the network in their order of strength.
Thus, a user would see a page with a title word, such as knowledge, and a list of initially
randomly chosen associated words, such as trade, view, health, theory, etc. (see first
column of table 3). Out of those 10 words, the users were supposed to choose the one
that is most strongly related to the title word knowledge, for example, theory. Selecting
this word, brought them to a new page, now with theory as the title word, and a new list
of 10 potentially related words, from which they were again supposed to choose the one
most related to the title word. In that way, users would browse through a network of
words linked by potential associations, each time selecting the link that seemed to best
reflect the associative meaning of the title word. The network itself was made available
on the World-Wide Web, so that people from anywhere in the world could participate in
the experiment whenever they wanted.

The network was programmed to learn from the selections made by the users. The
first learning rule, which we called “frequency”, was the most obvious one: each time a
link was chosen by a user, the corresponding association strength was increased relative
to the other associations. Thus, frequently selected links would gather strong association
values. Since linked words were ordered according to this strength, this means that
words that were selected often would move up in the list of 10. However, this
mechanism would only change the order of the list, not the choice of available words.
Therefore, we introduced two additional learning rules. The most important of these
rules, “transitivity”, implemented the principle that links between concepts are
strengthened even if there is a time interval between the successive activations. Thus, if
a user would subsequently go from A to B, and from B to C, we not only strengthened
the associations A → B and B → C, but also the indirect association A → C, albeit to a
smaller degree. The idea is that if A (e.g. knowledge) is associated with B (e.g. theory),
and B with C (e.g. research), then A is probably also somewhat associated with C.

This rule would now allow the network to strengthen associations between words
that had no direct connections within the list of their 10 initial links. Since the initial
random strengths were very small, any strength gained through the transitivity rule, even
though it was smaller than the strength gained through the frequency rule, would be
sufficient to make a word get ahead of the other words that had not been selected. Thus,
the ordering according to strength might now add the new link research to the list of 10
most strongly associated words in knowledge, displacing the weakest link until then.
The more people browsed through the network, the more potential new associations
were created by transitivity. However, only the links that were really good associations
would be directly chosen, and thus be rewarded by the frequency rule. The result was an
evolutionary process of variation and selection, where promising candidates for new
associations were constantly generated by transitivity, but only those that were good
enough would receive sufficient reinforcement from the frequency rule to be maintained
in the “top 10” list of associations.

The last rule, “symmetry”, helped speed up the process, by suggesting additional
candidates for good associations. The idea is simply that if there is an association from
A to B, then probably there is also an association from B to A. When a user would go
from word A to word B, the symmetry rule would not only reinforce the link A → B,
but also the link B → A, albeit again to a smaller degree. This rule was only added in our
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second experiment. Although the first experiment using frequency and transitivity was
surprisingly successful, the second experiment, with symmetry added, turned out to
work even better, requiring about half the time to achieve a result of similar quality.
Both experiments produced a rich associative network, in which all 150 words had
gathered strong connections to the most related other words in the corpus. Table 2
illustrates the development of the list of 10 strongest associations for the word
knowledge.

knowledge
0 200 800 4000
trade education education education
view experience experience experience
health example development research
theory theory theory development
face training research mind
book development example life
line history life theory
world view training training
side situation order thought

government work effect interest

Table 3: self-organization of the list of 10 strongest links from the word “knowledge”, in
different stages: initial random linking pattern, after 200 steps, after 800 steps, and after
4000 steps. A step corresponds to a user selecting a link on one of the 150 nodes, in a web
that evolves according to the frequency, transitivity and symmetry learning rules.

The most remarkable thing about these experiments was how little effort was needed to
develop a complex network of associations. With 150 words, the association matrix
would contain 22,500 elements. Asking the volunteer participants to score each of those
combinations with a numerical value would obviously have been totally impractical.
Instead, the only things the participants did was to select one out of ten possible links,
and this for as many words as they were willing to. On average, volunteers would go
through about 10 words until they got bored. This means, that the average volunteer
would make ten decisions, each time choosing one out of ten possibilities, a very small
effort. Yet, we needed only about 2500 decisions in total, that is, about 250 participant
sessions, for the associative network to achieve a fairly well-organized structure, in
which most associated word-pairs had developed links reflecting their relative
association strengths. In our papers presenting these experiments in detail [Bollen &
Heylighen 1996, 1998], we discuss a number of mechanisms, such as positive feedback,
that may explain the surprising efficiency of these learning web methods. Here, it may
be sufficient to note that these methods are inspired by the functioning of our brain,
which is obviously very good at learning associations.

After we analysed these experimental results, I have been reflecting about various
more sophisticated learning rules that would make the network even more efficient. In
particular, I propose to extend the transitivity rule in the following way: instead of only
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rewarding the indirect, two-step link A → C, we might reinforce all indirect links, A →
D, A → E, A → F, etc., but with exponentially decreasing rewards. The rationale is the
same mechanism of constant rate memory decay that I suggested to use when calculating
exponentially decreasing weights for word co-occurrences. For example, if the reward for
the two-step link A → C would be one half of the reward for the direct link A → B, then
the three-step link A → D would get one quarter, A → E one eight, etc.

This would greatly increase the total number of rewards given for an average link
selection. For example, for a 10 step sequence of link selections, it can be easily
calculated that 53 links would receive rewards of varying degree. This would
significantly accelerate the development of a differentiated matrix of associations.
Although most additional rewards would be small, they might be sufficient to create
direct links between words that were several steps removed from each other in the
initially random network, thus providing a much larger variety of potential associations
with the chance to be reinforced by the frequency rule. This would be especially useful
for networks consisting of very large numbers of words.

There is still the question in how far the resulting link strengths offer a good
measure of people’s intuitive associations. One test is to check the correlation between
the results of our experiment and word association norms, as [Spence & Owens 1990]
did for co-occurrence. Unfortunately, given our quite limited list of 150 nouns out of
which associations could be chosen, and the general sparseness of word association
norms, there was little overlap between our data and the norms provided by [Nelson et
al. 1998]. In those cases were there was some overlap, positive correlations were found,
but this can hardly be considered a reliable validation.

To get more reliable evidence, my colleague J. Bollen has set up a smaller scale
experiment using the 40 most frequent nouns in Dutch. This collection was small enough
so that he could ask the experimental subjects (Flemish psychology students) to directly
indicate which words were associated with which other words. Still, a 40 x 40 = 1600
list of potential associations is too large to be scored one by one. Therefore, the subjects
were provided with a special graphical software which allowed them to see all 40 words
on the computer screen, and draw connections between those words which they
considered to be associated. The resulting graphical network can be viewed as
representing the user’s “mental map” of the words’ associations. This map was
converted to a simple matrix consisting of 1’s (representing a connection) and 0’s
(representing the absence of connection). The matrix components for the different
participants could then be averaged: e.g. if 10 out of 30 participants drew a connection
from word i to word j, then the association aij would get strength 0.33. The resulting
average matrix represents a "collective mental map" of all users [cf. Heylighen 1999].
When the averaged matrix and the association matrix derived from a learning web
experiment were compared, it turned out that their components were strongly
correlated, indicating that two very different methods to estimate intuitive word
associations came to similar results.
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4. Applications of associative networks

I have argued that with present-day computer and communication technologies, it is
feasible to determine the associative meaning of words in the form of large matrices of
associations. These matrices can be used to tackle various problems related to ambiguity
in language. Let us now sketch some of these applications.

4.1. Classifying words and meanings

From an association matrix it is easy to derive a measure of the similarity between
words. You could derive similarity directly from association strength, e.g. by taking the
average of the association A → B, and B → A as the degree of similarity s(A, B) between
A and B. This, however, may be misleading, as words can be strongly associated (e.g.
cradle and baby, or mouse and cheese), yet have a very different meaning. A more
reliable way is to measure similarity indirectly, as the inverse of the distance between
the two vectors (ai) and (bi) that represent the two words' connotative meanings. This
inverse distance is usually calculated as the normalized inner product, or cosine, between
the two vectors:

s(A, B) =
aibi
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∑
ai

2

i
∑ bi

2

i
∑
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Defined in this way, s will vary between 1 (when the two vectors are identical or
proportional) and 0 (when the two vectors are orthogonal). More generally, s will
increase as A and B share more non-zero components ai and bi. Shared components
mean that A and B have associations with the same other words. This means that A and
B are to some degree interchangeable: in contexts where A occurs, B might occur just as
well. This will be the case when A and B are either synonyms, e.g. often and frequently,
or A and B represent distinct categories, but which share many features and tend to
occur in the same circumstances, e.g. ice and snow, or cat and dog. Still, the fact that two
synonyms are in principle interchangeable does not mean that you will find them to the
same degree in the same circumstances. For example, little is more likely to be associated
with child and less with car, while the opposite is true for its near-synonym small. Such
subtle differences could never be expressed by looking at the denotation or extension of
a word. Yet, association vectors do make a clear distinction between these two
connotations.

Once you can determine a semantic similarity between words or other items, it
becomes possible to cluster similar items together, in order to form larger categories. We
have done that with the results from our web learning experiment. Applying a clustering
algorithm to the association matrix allowed us to group most of the 150 most frequent
nouns into 9 superclasses (see table 4).
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"Time": age, time, century, day, evening, moment, period, week, year

"Space": place, area, point, stage

"Movement": action, change, movement, road, car

"Control": authority, control, power, influence

"Cognition": knowledge, fact, idea, thought, interest, book, course, development, doubt,
education, example, experience, language, mind, name, word, problem,
question, reason, research, result, school, side, situation, story, theory,
training, use, voice

"Intimacy": love, family, house, peace, father, friend, girl, hand, body, face, head,
figure, heart, church, kind, mother, woman, music, bed, wife

"Vitality": boy, man, life, health

"Society": society, state, town, commonwealth

"Office": building, office, work, room

Table 4: clusters of words derived from the learning web experiment [Bollen & Heylighen
1996, 1998].

[Burgess 1998] performed a more limited clustering with some of the words of his huge
co-occurrence database. It turned out that the associative network not only allowed a
discrimination between semantic categories (e.g. animals and people), but also between
grammatical categories, such as nouns and verbs, past tense verbs and past participles,
or demonstrative and genitive determiners. This can be understood from the fact that
Burgess's co-occurrence calculations take into account the distance between words in a
sentence. Since different grammatical categories tend to be at specific distances from
other grammatical categories (e.g. an article can be followed by a noun or an adjective,
not by a verb or another article), co-occurrence data therefore implicitly contain
information about grammar and word order. This may be sufficient for a computer—or a
child—to autonomously learn syntactical categories [cf. Finch & Chater 1992].
 Such superclasses correspond to broad, abstract categories. However, clustering can
also be used to discriminate between subclasses of more specialized meanings. Consider
an ambiguous word that has more than one meaning, such as bank. Some of the
associations of bank with other words will depend on one meaning, e.g. money, interest,
while other associations depend on its second meaning, e.g. river or edge. If you now
use the list of all words associated with bank and perform a cluster analysis you will
find clearly distinct clusters corresponding to the distinct meanings. If you then take the
vector of all associations that bank has with other words, then you can split it up into
two vectors, respectively using the components of the one and of the other cluster
(components that belong to both or to neither cluster can be evenly divided, or divided
proportionally to the distance they have with either cluster). These two vectors, whose
sum again forms the original bank vector, now represent the two distinct meanings:
"bank as financial institution" and "bank as river edge". This methodology can be used
even if a word has several meanings and if those meanings are very close, as
demonstrated by [Schütze 1998] on the basis of co-occurrence data.

A sufficiently smart clustering algorithm should thus be able to tell you how many
meanings a given word has, and provide an intuitive characterization of each meaning by
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labelling it with the strongest components in its cluster (e.g. bank: money, interest, rate;
and bank: river, sand, border). A dictionary or thesaurus of meanings, such as WordNet
[Miller et al. 1990], could then be used to look up the best corresponding meanings (by
hand or automatically, by computing similarities between meaning vectors and the
words used in the thesaurus' description), thus providing a more explicit label (e.g. bank:
financial institution, and bank: edge of river) [cf. Ide & Véronis 1998].

After discriminating between meanings or senses, the next logical step is to
determine which of those meanings should be used in a given context.

4.2. Spreading activation

Let us go back to our example of the "seagulls sitting on the bank”. When people read
that sentence, they have little difficulty interpreting bank as "river edge". The reason is
that hearing the word seagull, because of its strong association with watery surfaces (cf.
Table 1), already creates an expectation of something to do with water. This expectation
afterwards facilitates the interpretation of bank in its water-associated meaning. The
underlying mechanism has been experimentally investigated through the phenomenon of
semantic priming [cf. Burgess 1998; Lowe 1997].  This is investigated with the
following psychological experiment: subjects are shown or hear a first word (e.g.
seagull), the "prime", followed shortly by a second word (e.g. water), the "target". They
then have to perform as quickly as possible some action, e.g. push a button, to show
that they have understood the target word. The recurrent observation in these
experiments is that if the prime is associated with the target, then the subjects react
more quickly. In other words, having encountered a semantically related word makes it
easier to recognize a subsequent word. The effect does not exist with semantically
unrelated words, such as seagull and money: encountering the first word will not
influence the speed with which you recognize the second word.

The standard interpretation of this phenomenon is the following [Lowe 1997]:
recognizing the prime word activates that part of your memory or brain that
corresponds to that word's meaning. This activation tends to diffuse or spread towards
associated meanings. If then a word corresponding to one of these associated meanings is
to be recognized, the already present low level of activation makes it easier to activate
that meaning fully, and thus consciously interpret the word. [Burgess 1998] has shown
that the semantic priming effect can be simulated with an associative matrix derived from
word co-occurrence: the degree to which one word can prime another word in a
psychological experiment is correlated with the degree of semantic similarity between
word vectors.

In semantic priming experiments, activation seems to spread from a single prime
word to a single target word. In a more realistic situation (e.g. when reading a text), on
the other hand, several words will be activated, and this activation will spread in parallel
to a large group of associated words. This "parallel" spreading can be conceived in the
following way. Assume that two words, A and B, both are associated with a third word,
C. Activation of either A or B will bring a little activation to C. When both A and B are
activated, on the other hand, activation will enter C from both sides and the total
activation of C will be the sum of the activations coming from A and from B. The
amount of activation entering C will moreover depend on the degree of activation of A
and B and on the strength of the associative links from A and B to C. This can be easily
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represented in our vector space model of word associations. The "input" vector
represents the initial degree of activation of various words. If a vector component is
zero, this means that the corresponding word is not activated. If it is 1, it means the
word is fully activated. This vector can now be multiplied with the association matrix to
represent a single step of "spreading". This ensures that all words that have a non-zero
association with an initially activated word receive an amount of association from it
proportional to the strength of their incoming associative link from that word.

This multiplication can be repeated several times to represent a longer, multi-step
process of spreading activation. Multi-step spreading seems like a more realistic
mechanism, since the brain remains active constantly and does not stop after a single
step. Moreover, it allows us to explain phenomena such as mediated priming, where a
prime word (e.g. lion) can facilitate the recognition of a target word (e.g. stripes) even
though they are only linked indirectly, by their shared association with a third word (e.g.
tiger). [Rapp & Wettler 1991] have moreover shown that multi-step processes work
better than single-step ones when trying to model word associations with co-
occurrences.

We have implemented such a multi-step spreading activation in the associative
network derived from our learning web experiment. If, for example, the words control
and society are initially activated, this activation spread to other words, with the highest
amount of activation ending up in the word government. Similarly, if work , room and
paper are activated, the word that receives the highest activation was office. Note that
this is a way of retrieving concepts by indirect characterization. Neither work , room,
nor paper on their own would make you immediately think of office. Yet, when all three
are simultaneously present, the word office seems like the most obvious thing that
connects them all together.

Although he did not use spreading activation in his network, [Burgess 1998]
demonstrated a similar effect with the data from his co-occurrence analysis: when he
characterized a word by the list of words that were most close to it in the semantic
vector space, then people could often guess what the word was. This may remind us of
a classic memory experiment in which subjects listen to a long list of words (e.g. cool,
ice, hot, freezing, winter, ...) that are all closely associated to a target word (e.g. cold).
They are then asked to recall as many of the words they heard as possible. If the
associated words are well-chosen, subjects will typically recall the target word, even
though they did not hear it! The explanation, again, is spreading activation: the target
word has received so much activation from its surrounding associates that it becomes as
strongly activated (or even more strongly) as any of the actually perceived words.

4.3. Resolving ambiguity

How can we use spreading activation to resolve ambiguity? The most straightforward
approach may be to activate all the words in a sentence that have already been
recognized (e.g. seagulls, sitting, on, the) and then let activation spread from those in
order to prepare the ground for the interpretation of the following word (e.g. bank).
Since a word like the has no very strong associations, its activation will be distributed
more or less evenly in all directions, contributing very little to the activation of any
particular word. (This observation is often used to simplify the model by ignoring all
such "function" words, like articles and prepositions, that contain little information). A
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more specific word like seagull, on the other hand, will have a limited number of strong
associations, to words such as water (cf. table 1), along which a lot of activation will
flow. From water, activation may spread further to other words such as river. If then
the word bank is perceived, with one meaning strongly associated with river, then it is
this meaning, rather than the meaning "financial institution" that will receive most
activation, and therefore be selected as best interpretation.

One way to implement this is to calculate the similarity between the vector
representing the activation that has spread from the preceding—and possibly
subsequent—words (the "context") and the vectors that represent the different senses of
the word that still needs to be interpreted. The sense vector that is most similar to the
context vector can then be selected as best interpretation. A simple version of this
algorithm, with only a single spreading activation step, was used successfully by [Kikui
1999] to resolve ambiguity in English-Japanese translations.

A somewhat more involved method is to create inhibitory links between the
different, mutually exclusive senses of the word. This means that whenever one sense
receives activation, the activation in the other senses is proportionately inhibited or
decreased. Thus, the different senses are forced to "compete" for the available activation
during the successive spreading steps, and the one that receives most can suppress
activation in its rivals. [Véronis & Ide 1995] have shown that such a spreading activation
process can efficiently disambiguate word senses (although their work was limited by
the small number of associations they could derive from co-occurrence in dictionary
definitions, rather than from large-scale web processing).

Let us consider in more detail how to specify the initial activation vector.
Activating only the words in the preceding phrase seems rather unreliable, since the
context element that disambiguates a particular word may have occurred well before the
present phrase. On the other hand, if we would evenly activate all preceding words in
the text, we run the risk that activation would become so diffuse that any power of
discrimination is lost. Again, the most logical solution may be to activate all preceding
words, but in such a way that activation decreases exponentially with the distance to the
target word.

4.4. Information retrieval in the web

An at first sight very different application of these principles is the choice between
documents rather than between word meanings. The idea is that a user browsing through
the web will be looking for those documents that best match his or her interest. This
"interest" is actually similar to the word meanings which we have discussed until now.
For example, a user may be looking for information on "banks as financial institutions".
The traditional way to do this is to use a search engine, enter the keyword bank, and let
the search engine select all documents that frequently use the word bank. This brings
about several problems [Heylighen 1999]. Most obviously, the search engine does not
distinguish between "bank as financial institution" and "bank as river edge", and
therefore will return documents on either subject. [Schütze 1998] has shown that the
kind of word disambiguation methods which we discussed can make it easier for the user
to find the desired documents. For example, when the search engine encounters an
ambiguous word, it may reply with a list of possible meanings for that word
(represented, e.g. as clusters of associated words), and let the user select the most
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appropriate one. It can then use the words most strongly associated with each meaning
(e.g. money, rate, vs. river, edge) to classify documents containing the word bank
according to whether they are closer to the one or to the other meaning, and only return
the documents that match the desired meaning.

A more serious problem is that the interest of the user in general cannot be defined
by one or a few keywords. For example, the user may be interested in documents that
discuss the banking business in a light-hearted, playful manner. There is no obvious way
to select that kind of documents by entering keywords. Which are the words that light-
hearted documents would particularly use? The only way to establish that a document
is light-hearted is to let it be read by another user, who would be able to intuitively
estimate its light-heartedness. But even if we would have a committee of users that
would establish the degree of light-heartedness of all documents on the web, allowing us
to attach "light-heartedness" labels to specific documents, this would still only help a
fraction of all the different users that are looking for different styles and types of
documents. Moreover, the user searching for documents on banking may not even know
that she is looking for light-hearted texts, but would still very much prefer to read such a
text if she could find one. In that case, the label would be of little use.

More generally, the user's interests and preferences may depend on a myriad of
factors, most of which she would not be able to formulate explicitly. Yet, if she would
find a page satisfying those interests, she would intuitively recognize it. This is similar
to the problem of meaning: in general it is very difficult, if not impossible, to explicitly
define or formulate the full meaning of a word or phrase; yet, we have no difficulty
grasping that meaning when we encounter it. Therefore, we might try to tackle the
problem of modelling interest in the same way as we tackled the problem of modelling
meaning: by creating a network of associations and exploring it through spreading
activation.

The methodology that we used to create a learning web of associations between
word can be applied straightforwardly to create a learning web of associations between
documents. It suffices to reinforce direct or indirect links followed by users "surfing"
from page to page. A strong link between two pages A and B then would mean that
most users who looked at page A, also looked at page B. To reliably model an
association of interest, one more element needs to be added to the algorithm. Since users
browse the web by selecting links rather than selecting documents, it is in principle
possible that many users would "click" on the link pointing to document B because it
looks interesting, but then would discover that the document does not fulfil its
promises. In that case, the present learning web algorithm would still reward the link to
B, thus persistently drawing readers to a disappointing page. In order to avoid this, the
algorithm must take into account some implicit or explicit evaluation of the
interestingness of a document.

A simple, implicit measure is the duration of a visit: the more interesting the page,
the more time the user will spend reading that page. It has been shown empirically that
this measure gives a good estimate of the interest for a document rather than for its
length [Nichols 1998]: users do not spend more time with long, irrelevant documents
than with short, irrelevant documents. Still, the degree of interest is not strictly
proportional to the time spent in front of the page: there can be any number of reasons,
such as an incoming phone call or a visit to the coffee room, why a user might keep a
document open on his or her web browser for an extended period of time. If the
document is clearly irrelevant, on the other hand, the user is likely to immediately click
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on a further link, or go back to a previously consulted document. To take these effects
into account, we need a formula that extracts the most significant part of the measurable
duration between page visits. It is possible to define a sigmoid-like function that reduces
all very short intervals (up to about 5 seconds) to zero, then increases almost linearly
with time, slows down and reaches a horizontal asymptote after a few minutes. The
precise parameters of the function will need to be tuned by experimentation, but the
approach should be clear: only the interval between first viewing the page and reading
several paragraphs of it is really significant as an estimate for the interest a user finds in
that page.

Whether we use this implicit estimate based on duration, or an explicit evaluation
by the user, once we know how interesting the user found a page, we can produce a
more reliable formula to calculate association strength. Instead of rewarding a link A → B
with a fixed amount, we can reward it with an amount proportional to the degree of
interest the user has for both A and B. Thus, links between uninteresting pages will
receive little reinforcement, while links between interesting pages will receive a lot.
Another way to see this is to consider interest expressed by a user (e.g. through the time
spent reading the page) as a form of "activation" received by a virtual "neuron" that
represents the page. If two neurons are subsequently activated, then the rule of Hebb
tells us that the synapse linking them should be reinforced, in proportion to their degree
of activation.

The longer the time that has passed between the subsequent activations, the weaker
the reinforcement should be. I suggested earlier that reinforcement should decay
exponentially with the number of intermediate words or page visits. In an environment
where the time spent reading (or drinking coffee) can vary greatly, it seems more
accurate to let reinforcement decrease exponentially with the continuous duration, rather
than the discrete number of steps, in between page visits. Again, this can be motivated
by a general memory model in which activation decays at a constant rate: the longer the
time that has passed since a user concentrated on a particular topic, the more likely it is
that his or her focus of attention has shifted to a different domain. Thus, if a user has
been reading page A and, two hours later, page B, then A and B most likely have nothing
particular in common. On the other hand, if the user attentively reads B two minutes
after reading A, then A and B probably treat closely related subjects.

To build an associative network based on these observations, it suffices to mine
data from a website's log [Bollen, Van de Sompel & Rocha 1999]. Such a log lists which
pages have been consulted by which user at which moment. This is enough to
reconstruct the complete path of pages a given user has been subsequently browsing
during one session, as well as the duration spent browsing each individual page (out of
which the page's "activation" can be computed), and the duration in between two
different page visits (out of which the exponential decay factor can be computed). This
gives us all the information we need to provide accurate reinforcements to all the
potential links between pages, and thus compute their overall relative strength.

How can we use the resulting network of associations to facilitate information
retrieval in the web? First, as in our original web of word associations, learned links
would be appended to the web page in the order of their strength. Thus, visitors to a
given page would immediately get a list of recommended pages in the order of their
estimated relevance. "Relevance" here simply means "interestingness, relative to the
subject of the present page". For example, a high quality page on the history of
relativity theory might provide a link to another high quality page with a biography of
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Albert Einstein, originator of the theory. The link would mean that people interested in
the first page would most likely also be interested in the second page. This implies two
things: 1) pages would get clustered according to the degree of similarity in their
subjects. Pages on widely different subjects, e.g. relativity theory and football, would
only have very weak connections; 2) in any given domain, high quality pages would get
more and stronger incoming links than low quality pages. This means that if you are
interested in a particular subject, it would suffice to find any page on that subject (e.g.
using a traditional search engine or subject index), in order to be immediately led to
strongly related pages, allowing you to explore the domain in the most efficient way.

Creating relevant links is only the most rudimentary application of associative
webs, though. Another relatively straightforward application is the clustering of web
pages according to their associative similarity, so as to create automatic indexes of pages
on the same topic, or a classification of subjects. A more sophisticated application is
spreading activation from a "context vector", as discussed in the preceding section. A
person subsequently reading documents about a particular subject on the web is in a
way similar to a person subsequently reading words which together form a coherent
sentence or discourse. We have discussed how associative network technology might
automatize or support that process: the context of preceding words can "activate" a
cluster of meaning in the network, helping us to guess the correct sense for the next
word.

Let us apply the same mechanism to web browsing: each document a user reads
receives activation proportional to the interest shown by that user (e.g. as derived from
the reading duration). This activation decays exponentially: the more time has passed
since the user read a document, the less of its activation remains. All documents are
connected by a huge network of associations, learned from previous user activities, and
represented by an associative matrix. This network can now be used to let the activation
spread to related pages. From those, the as yet unread pages are recommended to the
user, in the order of their degree of activation. Each time the user starts reading a page,
this page too is considered activated in proportion to the user's appraisal of it, and a
new spreading activation process is carried out, producing an updated list of
recommendations. Thus, wherever the user goes, the associative network accompanies
and supports him or her with an increasingly reliable list of recommendations, tailored to
the user's specific interests of the moment, but taking into account his or her general
preferences as implicitly expressed through earlier choices. In that way, the web
becomes an intelligent, intuitive companion, that anticipates every user's wishes and
desires.

5. Conclusion

This paper has reviewed the basic principles underlying a number of still experimental—
or even speculative—computer technologies. These technologies distinguish themselves
by representing knowledge, interest and meaning by means of a network of associations.
These associations may connect words, concepts, or documents. However, it is not the
components that are connected, but the connections themselves that play the central
role. An component in such a network only gets its meaning through its relations with
other elements. As such, these networks are "bootstrapping": their components
mutually support each other [Heylighen, in press]. This avoids many of the deep
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problems, such as "symbol grounding", that until now have plagued more traditional
knowledge representations in Artificial Intelligence. Moreover, these networks are
intrinsically "soft" structures, that can easily shift or adapt to tiny changes in
associative strength. This allows them to express all the vague, fleeting, intuitive,
context-dependent meanings that are otherwise so difficult to grasp [cf. Heylighen 1991;
Heylighen & Dewaele, in press].

The disadvantage of associative networks is that they tend to be huge. For example,
a typical word co-occurrence matrix as created by the group of [Burgess 1998, Burgess
et al. in press] contains 140,000 by 140,000 numbers. Most researchers have therefore
reduced the dimensionality of their matrices, using methods such as multidimensional
scaling, principal components analysis, singular value decomposition, or simply
selecting only the most variable or informative context words to compute associations
with. This simplifies processing, allows low-dimensional, graphical representations of
the semantic space [e.g. Schütze 1998; Lowe 1997], and may even improve the quality
of the model by removing "noise" from the data, as exploited by Latent Semantic
Indexing techniques [Deerweester et al 1990; Foltz 1996]. Yet, present computers and
algorithmic techniques seem powerful enough to work even with the full matrices, and
this opens up a whole new range of possible applications that still need to be explored.

The more profound problem is the knowledge acquisition bottleneck: how do you
transfer such a huge amount of associations from a person's mind into a computer? A
solution is suggested by the idea that originally inspired the use of associative networks:
their similarity to the organization of the brain, with its variable strength synapses
connecting neurons. In the brain, associations are learned through the rule of Hebb
[1967]: phenomena that are encountered in close succession become more strongly
associated. A similar mechanism should allow a computer too to learn associations. The
problem is still that in order to extract a rich network of associations the computer must
receive a sufficiently large input of data.

This bottleneck can be overcome with the help of the world-wide web. Previous
computer-aided attempts to analyse language had to rely on manually entered corpora,
which very much limits their size and representativeness. The present web, on the other
hand, provides automatic and free electronic access to billions of natural language
samples, scattered over the most diverse subject, genres and styles. The most obvious
method to mine these riches for their implicit associations is co-occurrence
measurement: counting the number of times a particular word appears in the
neighborhood of another word. These co-occurrence frequencies have been shown to
provide good indirect estimates of associative strength.

The most direct method would let people estimate the relative association between
words, documents or items. Although it is impossible to have all possible associations
scored individually, my colleagues and I have developed a somewhat less direct method,
web learning, that seems to work surprisingly well. The idea, inspired by a generalized
rule of Hebb, is that the more users actively use direct or indirect connections, the
stronger the corresponding links should become. Thus, the network learns from the
collective activity of its users. Like for the co-occurrence approach, I have proposed to
improve the method by making reinforcements decrease exponentially with the time
interval between subsequent encounters. Such a method could in principle turn the web
itself into a huge, associative memory connecting all possible subjects.

Whichever method is used to develop it, once an associative network is available it
can be applied to tackle various fundamental tasks required for language technologies,
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such as clustering of words into categories, discrimination of word senses, and
disambiguation on the basis of context. The underlying process is equivalent to the
mechanism of spreading activation that is assumed to underlie all cognitive processes in
the brain: elements activated by a given context in their turn activate a neighborhood of
other, closely associated elements. Thus, the associative network becomes more than a
static memory: it becomes an active, brain-like processor, capable of interpreting input,
choosing between alternatives, or even "thinking ahead". If the web itself would become
such an active associative network, we might truly call it a "global brain": a world-wide
intelligent network that constantly learns from its users, and helps them by anticipating
and finding answers to all of their questions [Heylighen & Bollen 1996; Heylighen
1999].
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