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Introduction 

The present chapter wishes to investigate the wider context of human 

computation, viewing it as merely one approach within the broad domain 

of distributed human-computer symbiosis. The multifarious developments 

in the “social” Internet have shown the great potential of large-scale col-

laborative systems that involve both people and information technologies. 

Here, I wish to explore this development in the broadest sense, as the self-

organization of a distributed intelligence system at the planetary level—a 

phenomenon that has been called the “global brain”.  

To get there, I will first define and illustrate the fundamental concept of 

distributed intelligence. Then I will review how such an intelligent net-

work emerges and grows through a combination of self-organization and 

design. Finally, I will sketch some potential applications of the anticipated 

global brain. 



Human-computer complementarity 

The rationale for human computation is that people have certain intrinsic 

skills that are difficult to reproduce in computer programs. A computation 

system that makes use of those skills must therefore include people as in-

formation-processing agents. Thus, in human computation, people and 

computers are supposed to work together synergetically, the one comple-

menting the other.  

The reason for this complementarity lies in the fact that humans and com-

puters process information in very different ways. Computers excel at ac-

curately storing and retrieving discrete items, such as numbers or strings of 

characters. Human long-term memory, on the other hand is a network of 

associations that is continuously being modified by selective weakening, 

reinforcing, and combining of memory traces. As a result, people not only 

forget much of what they observed, but they are strongly biased in what 

they recall, and sometimes even “remember” things that never happened 

(Loftus & Pickrell, 1995). Thus, human memory is very unreliable com-

pared to computer memory.  

The problem gets even worse when people need to manipulate data, which 

happens in their working memory. This is the human equivalent of com-

puter RAM. Working memory, however, cannot sustain more than some 4 

items simultaneously (Cowan, 2001). Therefore, most people are unable to 

make any but the most trivial calculations without the help of pen and pa-

per. Computers, on the other hand, are virtually unlimited in the amount of 

items they can manipulate, and do not make mistakes when retrieving 

stored information. 

This unreliability of human memory is compensated by the fact that the 

neural networks that make up our brain are very effective at learning asso-



ciations between different experiences, and thus uncovering subtle patterns 

in information (McLeod, Plunkett, & Rolls, 1998). Moreover, the brain is 

remarkably reliable in the recognition of patterns similar to patterns expe-

rienced before, even while being poor at recall, i.e. retrieving exact data. 

Recognition is so robust because the newly activated pattern can be very 

different from the one stored in memory, but still the activation spreads 

through a myriad of learned associations until it activates memories that 

are in some way related to the new perception. This prepares the mind to 

anticipate features of that pattern analogous to features experienced before, 

a form of “intuition” that computers generally lack. 

Moreover, human cognition is situated and embodied (Anderson, 2003; 

Clancey, 1997; Clark, 1998): we continuously interact with our environ-

ment via exquisitely sensitive and sophisticated sensory organs and muscle 

systems, which have evolved over billions of years. This provides our 

brain with a very high-bandwidth channel for input, output and feedback, 

allowing it to learn the high-dimensional, fine-grained patterns and corre-

lations that characterize the real world with all its complexities and dy-

namics. Thanks to this direct coupling between brain and outside world we 

learn not only to recognize subtle patterns, but to perform precisely coor-

dinated actions. Indeed, the fine-grained sensory feedback we get allows 

us to automatically perform the kind of complex manipulations that are so 

difficult for robotic devices.  

This on-going interaction has provided people with a lifetime of real-world 

experience, getting them to know subtle relations between millions of phe-

nomena, variables and stimuli. The resulting knowledge is nearly impossi-

ble to implement in a computer program, as most of it is too fuzzy, holistic 

and context-dependent to be exteriorized in the form of symbols and rules. 

The difficulty of formalizing such knowledge is known in AI as the 



“knowledge acquisition bottleneck” (Wagner, 2006). It is one of the rea-

sons that information technologists have turned to systems that include 

human computation: letting people perform those tasks that are too diffi-

cult for a computer program, while using computers to do the tasks that are 

difficult or tedious for people (Quinn & Bederson, 2011; Von Ahn, 2009).  

Distributed intelligence 

Human computation is one among a variety of paradigms that study how 

people supported by information and communication technologies are able 

to solve more problems together than when working in isolation. These 

approaches have been variously called man-machine interaction, human-

computer symbiosis, computer-supported cooperative work, social com-

puting, crowdsourcing, collective intelligence, and wisdom of crowds. Dif-

ferent labels or metaphors tend to emphasize different aspects of this syn-

ergetic interaction, while ignoring others. For example, human 

computation considers individuals as merely components performing spe-

cific subroutines within a clearly defined overall program, thus making 

them subordinate to the technological system (Nagar, 2011). Computer-

supported cooperative work, on the other hand, takes the opposite stance, 

seeing the technology as subordinate to the human interaction, while col-

lective intelligence a priori ignores technology, even though its practical 

implementations almost always rely on some kind of information technol-

ogy.  

My aim here is to look for the most general collaborative framework, im-

plying a minimal bias about what kind of activity is performed by whom 

or by what. A good starting point can be found in the concepts of informa-

tion processing and distributed cognition (Heylighen, 2012a; Nagar, 



2011). Information processing is a notion broader than computation, as it 

does not assume well-structured, “computable” tasks. It has been exten-

sively used to analyze how organizations solve their problems (Galbraith, 

1974; Tushman & Nadler, 1978)—with or without computer technology. 

Neural network models illustrate how information processing in the brain 

is distributed (Rumelhart & McClelland, 1986): different neurons deal si-

multaneously with different aspects of the information, while aggregating 

their results into a comprehensive interpretation. Such collaboration be-

tween different components of the brain inspired Minsky (1988) to con-

ceive of the mind as a “society” of interacting agents. The analogy works 

both ways, though: human society itself is in a number of respects similar 

to a brain, since it consists of agents that together solve problems that are 

too difficult for the agents individually. Thus, the distributed information 

processing perspective is applicable at all levels, from neural circuits, via 

the brain and organizations, to society as a whole. The principle is simply 

that a collective of collaborating agents can process more complex infor-

mation more extensively than any individual member of that collective.  

The last step we need to reach the notion of distributed cognition is to ob-

serve that physical objects or tools too can function as information proc-

essing agents. The simplest tools, such as books, merely store information 

for later use, thus compensating for the unreliability of human memory. 

Other tools, such as telephones, can transfer information from one agent to 

another across distances. Yet other tools, such as sensors, cameras or re-

corders, can capture external information. The most sophisticated tools—

as exemplified by modern ICT—store, register, transfer and process in-

formation. Integrate such tools with human agents into a coordinated sys-

tem or organization and the result is distributed cognition (see Fig. 1): the 

acquisition, propagation and processing of information across a heteroge-



neous network of people and artifacts (Dror & Harnad, 2008; Hollan, 

Hutchins, & Kirsh, 2000; Hutchins, 2000).  

Distributed cognition as originally conceived by Hutchins (1995, 2000) is 

a description of an existing situation: social systems have always used ex-

ternal aids for propagating and processing information. What the newer 

approaches, such as human computation, aim at is to use information tech-

nologies to make such distributed processing much more powerful, more 

efficient, or more intelligent. Let us then call this new endeavor distributed 

intelligence (Fischer, 2006; Heylighen, 2012a). The present paper wishes 

 

Figure 1: a depiction of an organization as a distributed cognitive system, 

i.e. a network of humans and artifacts that store, process, and propagate infor-

mation along the links in the network. The thickness of an arrow represents the 

intensity of the communication across the corresponding link. Incoming arrows 

represent input to the system (its perception of the environment), outgoing ar-

rows its output (its action on the environment). 

 



to investigate the future of distributed intelligence: how are distributed in-

telligence technologies likely to develop and to affect society at large? To 

answer that question, we must first understand how distributed intelligence 

emerges from its components. 

Self-organization 

Distributed intelligence can be understood as the coordinated activity of a 

collective of agents (human or technological) that process and propagate 

information between them. In formal organizations, such as firms, com-

puter systems, or administrations, such coordination is normally the result 

of design (Galbraith, 1974; Tushman & Nadler, 1978). This means that 

some person or group of persons has developed a scheme that specifies 

which information is to be processed by which agent, and how the output 

of that process is then sent for further processing to one or more other 

agents. Such schemes take the form of computer programs, organizational 

charts or workflow diagrams.  

However, as anybody who has worked in an organization knows, such a 

scheme only captures a small part of the actual information flow. Most 

communication follows informal channels, which together form a social 

network. A social network is formed by links of acquaintanceship, friend-

ship or trust, which are built up through the personal encounters and expe-

riences of the people in the group. In other words, a social network is not 

imposed by central design, but emerges through decentralized self-

organization. If we zoom out and consider increasingly large distributed 

cognitive systems, we will notice that explicit organization plays an in-

creasingly small role, while implicit networks become increasingly more 

important. The reason is simply that the more complex the system, the 



more difficult it becomes to completely specify the rules about which 

component is to work with which other component in which way. If we 

compare the poor results of central planning in communist societies with 

the effectiveness of the “invisible hand” of the market, then we can only 

conclude that self-organization must be the major driver of coordination in 

a system as complex as society.  

Self-organization is not just the foundation on which social systems are 

built. Its power is increasingly being harnessed for building technological 

systems. Here too, designers are confronted with a complexity bottleneck: 

as soon as the number of components and their interactions become too 

large and/or too variable, explicit design or “programming” of the system 

becomes infeasible. That is why computer scientists and engineers are now 

exploring self-organizing solutions to the problem of how to coordinate a 

variety of interacting modules (Bartholdi III, Eisenstein, & Lim, 2010; 

Dressler, 2008; Elmenreich, D’Souza, Bettstetter, & de Meer, 2009).  

Self-organization is perhaps most critical in the Internet, which is the most 

complex socio-technological system that presently exists. It is simply im-

possible to make a rational design for how the different websites and serv-

ices on the Internet should be connected, because no one knows exactly 

which services exist and what they can do. Moreover, thousands of new 

pages, forums and applications appear every day, seeking their place 

within an anarchic and highly competitive network of linked information 

sources. Thus, the topology of cyberspace is changing so rapidly that no 

central authority can ever hope to control it.  

How does self-organization work? At the most basic level, every evolu-

tionary process uses trial-and-error, a mechanism that can be described 

more accurately as blind-variation-and-selective-retention. If you do not 



know how to fit things together, then you try a variety of combinations. 

You then eliminate the ones that do not work (errors), and select the others 

for retention. This process is iterated: the retained solutions are again 

modified, producing some variants that work better and are therefore re-

tained, some that work worse and are therefore rejected. If you continue 

this iteration long enough, you are bound to end up with something much 

better than what you started out with. This process can be speeded up with 

the help of positive feedback: amplifying or multiplying the “good” solu-

tions in proportion to their “goodness”, so as to increase the average qual-

ity of your starting material for the next iteration, but without losing the 

necessary variety. This is the mechanism underlying both biological evolu-

tion and its application to computation as implemented e.g. by genetic al-

gorithms (Booker, Goldberg, & Holland, 1989).  

The same kind of positive-feedback enhanced iteration occurs in self-

organizing systems (Heylighen, 2013), with the difference that the selec-

tion is “natural”. That means that there is not any agent or explicit criterion 

deciding what to keep and what to reject. It is rather the system as a whole 

that determines what survives and what is eliminated. The selected varia-

tions are the ones that fit their environment. In the complex adaptive sys-

tem that we are considering, the environment of a component is constituted 

by the agents that it directly interacts with. A “fit” interaction in this case 

means one that is beneficial, so that the participating agents are inclined to 

continue it. If the interaction is not beneficial, then there is no reason to 

maintain it, and the link with the component will be cut. Thus, natural se-

lection here is in the first place a selection of links between components or 

nodes in the network. The same component may fit in well with certain 

agents, but not with others. To find out where it fits best, it needs to try out 

various links, keeping (or strengthening) the good ones and eliminating (or 



weakening) the less good ones. This is the same mechanism that underlies 

learning in the brain: useful links (as embodied by synapses connecting 

neurons) are reinforced; less useful ones are weakened, and eventually cut. 

 

The self-organization of distributed intelligence 

Let us now apply this self-organizing dynamics to heterogeneous networks 

of cognitive agents, i.e. people and ICT systems. Human computation sys-

tems are examples of such heterogeneous networks, albeit that their orga-

nization is largely designed or programmed. At the level of the Internet as 

a whole, however, size and heterogeneity increase to such a degree that de-

sign must make place for self-organization via selective linking. A simple 

illustration of how this can happen is bookmarking: when a person surfing 

the web encounters a particularly interesting or useful page, such as a 

weather forecasting service, a search engine, or an overview of the domain 

in which the person is interested, then that person will store a link to that 

page in the browser, as a “favorite” or “bookmark”. This makes it easy for 

the person to come back frequently to that page. Here, a stable link is cre-

ated between a human and an ICT agent.  

A link between two human agents is created when one person meets an-

other one—face-to-face or on the web—and finds that person interesting 

enough to add him to her list of “contacts” in some social network applica-

tion, such as Facebook or LinkedIn. This link now makes it easy for the 

first person to directly pass on information to the second one. A connec-

tion between two ICT agents is established when a hyperlink is made from 

one webpage or website to another one, or when one ICT system (say, the 



Facebook platform) decides to exchange data with another one (say, the 

Skype calling service).  

In all these cases, links that are successful, in the sense that the agents 

benefit from them, will survive and be reinforced, while links that are use-

less or counterproductive will be forgotten and eventually erased. For ex-

ample, your link to site A may turn out to be particularly useful, and there-

fore you give it a more prominent place, making the one to the less user-

friendly site B redundant, so that you eventually remove it. Similarly, you 

may from time to time remove “contacts” that turn out to be tiresome, 

while upgrading others to the status of “friends” or “collaborators”. This 

on-going variation and selection of links makes the network as a whole 

evolve towards an increasingly efficient or “intelligent” organization. This 

is analogous to the way the neural networks in our brain learn how to re-

spond more intelligently to the problems they encounter.  

The intelligence of this distributed system can be understood through the 

paradigm of challenge propagation (Heylighen, 2012a). A problem, ques-

tion, message or opportunity constitutes a challenge for one or more 

agents: it incites the agent to act, i.e. to respond in a way that may solve 

the problem, answer the query, reply to the message, or seize the opportu-

nity. A challenge in this sense is a generic term for a piece of information 

that carries value for an agent, and that therefore can motivate the agent to 

process the information in order to extract that value. Challenges can be 

positive (acting on them provides benefit: opportunities) and/or negative 

(not acting on them makes you lose benefit: problems). Dealing with chal-

lenges is therefore a generalization of solving problems. Problem solving 

is considered to be the hallmark of intelligence, as more intelligent agents 

can solve more or more difficult problems then less intelligent ones. 



To measure the intelligence of a distributed network, we can then try to es-

tablish its capacity to effectively process challenges. Normally, different 

agents have different skills in dealing with challenges. For example, com-

puters excel in making complex calculations, while people excel in under-

standing spoken language. Different people and different computer agents 

have further their own special abilities, so that our network as a whole will 

present a wide range of finely grained skills and expertise. A complex 

challenge (say, global warming) has a large number of aspects that each 

require different skills. The problem now is to distribute the different chal-

lenge components across the different agents so as to make sure the chal-

lenge as a whole is dealt with in an efficient way. This is the basic problem 

of coordination, which includes division of labor (who deals with what 

challenge component?), workflow (where does a component go after it has 

been partially dealt with?), and aggregation (how are all the finished 

 
 

Figure 2: An illustration of coordination, in which an initial task is split up in 

separate activities performed by different agents (division of labor), which are 

followed by other activities (workflow), and whose results are assembled into a 

final product (aggregation). Grey circles represent individual agents performing 

activities. Arrows represent the “flow” of challenges from one agent to the next. 

 



pieces of work assembled?) (Heylighen, Kostov, & Kiemen, 2013; 

Heylighen, 2013) (see Fig. 2).  

Perhaps surprisingly, such distributed coordination can self-organize rela-

tively easily across the Internet, via the mechanisms of stigmergy 

(Heylighen et al., 2013; Heylighen, 2007a) and challenge propagation 

(Heylighen, 2012a). A good illustration can be found in the different open 

source communities developing complex software without central author-

ity, and Wikipedia, the online encyclopedia created and maintained by mil-

lions of volunteer contributors. Stigmergy is an implicit coordination 

mechanism whereby a challenge left by an agent in a workspace that is 

shared with other agents stimulates those agents to continue dealing with 

that challenge (Parunak, 2006). For example, a paragraph added to a 

Wikipedia page by one person may incite a second person to add some ex-

tra details, a third one to add a reference for the new material, and a fourth 

one to edit the text so as to make it more readable. The reference may then 

be checked and correctly formatted by a software agent. In this case, chal-

lenges are spontaneously addressed by subsequent agents mediated by the 

shared workspace (in this case the Wikipedia website). In the case of chal-

lenge propagation, the workflow is initiated by the agents themselves. An 

example is an email message sent and forwarded with comments by differ-

ent people, a “post” in a social network or forum that is reposted to other 

forums, or a task that is proposed by a crowdsourcing system to people in-

terested to work on it.  

In both cases, challenges can travel more or less efficiently across the net-

work of agents and workspaces until they find an agent able and willing to 

deal with them, and then continue their journey along other agents dealing 

with the remaining aspects. This allows complex challenges to be resolved 

in a distributed manner, by harnessing the collective intelligence of the dif-



ferent components (human and technological) of the network. Presently, 

my research group is developing a mathematical model of this process, in 

order to investigate precisely how the distributed intelligence of the net-

work can increase as it selectively strengthens or weakens its links 

(Heylighen, Busseniers, Veitas, Vidal, & Weinbaum, 2012). 

 

The Global Brain 

What happens when such a self-organizing distributed intelligence net-

work grows to encompass the planet (as the Internet already does)? The re-

sult can perhaps best be understood using the metaphor of a global brain 

(Bernstein, Klein, & Malone, 2012; Goertzel, 2002; Heylighen, 2008; 

Mayer-Kress & Barczys, 1995). The global brain can be seen as the nerv-

ous system of the planetary superorganism (De Rosnay, 2000; Heylighen, 

2007b; Stock, 1993). This is the “living system” (Miller, 1995) formed by 

all people on this planet together with their artifacts and technologies. The 

task of its brain is to gather and process information about the situation of 

the world and all its people, find solutions to any problems it detects, and 

incite and coordinate actions to deal with those challenges (cf. Helbing, 

Bishop, Conte, Lukowicz, & McCarthy, 2012). This is similar to the task 

of the human brain, which gathers information through its sensory organs, 

processes that information in order to evaluate the situation, then reflects 

about strategies to deal with the challenges it finds, and finally implements 

those strategies by sending signals to the muscles so as to direct and coor-

dinate their actions. A secondary task of both human and global brain is to 

learn from its experiences by reinforcing the successful links in its network 

(and weakening the others). This allows it to develop ever more detailed 



and accurate knowledge about itself and the environment in which it lives, 

and thus to become ever better at dealing with the challenges it encounters. 

We should expect the problem-solving abilities of the global brain to be 

orders of magnitudes larger than that of any single individual, organiza-

tion, or computer system. This is because all people and computers collec-

tively have access to immensely more knowledge and processing capaci-

ties than any of them individually (Heylighen, 2012b). The only 

requirement to efficiently harness this collective intelligence is coordina-

tion. This can be expected to self-organize, as illustrated by both empirical 

observations (Heylighen, 2013; Woolley, Chabris, Pentland, Hashmi, & 

Malone, 2010) and simulations (Elmenreich et al., 2009; Heylighen et al., 

2012). However, self-organization at a scale as large as the world obvi-

ously needs time, as countless iterations of the variation and selective rein-

forcement process must take place, and as any provisionally “fit” result 

will need to be updated as soon as a new agent or technology appears on 

the scene. Thus, all components of the global network will continue to co-

evolve at a rapid pace, increasing their degree of coordination, efficiency 

and intelligence in the process, but in a manner so complex that we cannot 

predict it in any detail.  

It is impossible to say when this process will have produced the equivalent 

of a global brain, since distributed intelligence is a continuously growing 

and evolving measure of coordination, not a phenomenon that either is or 

is not present. Thus, we cannot “detect” the presence or absence of a 

global brain, but we can conceivably measure the increase in distributed 

intelligence of the global network. In our mathematical model (Heylighen 

et al., 2012), we have developed one such quantitative measure, and sug-

gested some methods to gather the necessary empirical data to test its evo-

lution in the real world—but these are very preliminary results. 



The self-organization of the global brain could in principle be accelerated 

by complementing it with thoughtful design.  As we start to better under-

stand processes such as self-organization, distributed cognition, collective 

intelligence and human-computer complementarity, we may be able to 

avoid some of the trial-and-error search, and develop systems that produce 

coordinated information processing more quickly and more reliably. For 

example, inspired by their insights into collective intelligence, Bernstein et 

al. (2012) have suggested methods for “programming” the global brain—

but these too are very preliminary. Further methods may be discovered 

through research in human computation, crowdsourcing, ontology devel-

opment, and related fields. However, no single system, method or program 

will ever be able to capture the immense size and complexity of our plane-

tary network. Therefore, we must resign ourselves to the fact that we will 

never be able to fully control the process. Perhaps the most promising ap-

proach is what may be called “guided self-organization” (Helbing, 2012): 

developing strategies, programs, and institutions that will facilitate and to 

some degree steer the self-organization of the global brain in what appear 

to be the most fruitful directions. But to achieve that, we must first of all 

better understand what the global brain would be able to do, and especially 

what we want it to do. 

 

Some applications of the Global Brain 

Now that we have a better grasp of how a global brain-like system would 

emerge, let us try to sketch some of its potential benefits for society. In 

principle, the Global Brain should help us to tackle any individual or col-

lective challenge, by providing us with a vast reservoir of knowledge, sen-



sory data, information processing capacity, and ability to incite coordi-

nated action. A first domain that would profit from these superhuman 

abilities is the economy. 

The market is the collective system of transactions that helps supply to 

match demand, and thus to satisfy the public’s need for products and serv-

ices. A traditional market is rather inefficient, requiring a huge infrastruc-

ture of middlemen, specialized organizations such as stock exchanges and 

auctions, and communication channels. The Internet already allows such 

transactions to take place much more quickly and transparently, with less 

cost and effort. This strongly reduces friction, making the economy more 

efficient so that demand can be satisfied more rapidly, more accurately, 

and at a lower cost. The global brain will not only facilitate communica-

tion between suppliers and clients, but help buyers to find the best value 

(e.g. through shopping agents to find items and compare prices), and help 

sellers to get the best price (e.g. through auctioning systems and targeted 

advertisements).  

The net effect will be that growth and productivity increases, while infla-

tion and economic instability decrease. Moreover, there will be less waste 

because of unsold items or goods shipped far away when there is demand 

around the corner. The direct incorporation of collective effects (“external-

ities”) in the decision-making process will moreover allow a more efficient 

governance over the economy, thus protecting employees and consumers 

while reducing inequalities and pollution, without the added complexity, 

bureaucracy and rigidity that tend to accompany such interventions in a 

centralized political system. 

The global brain can moreover help eliminate conflicts. It in principle pro-

vides a universal channel through which people from all countries, lan-



guages and cultures of this world can converse. This makes it easier to re-

duce mutual ignorance and misunderstandings, or discuss and resolve 

differences of opinion. The greater ease with which good ideas can spread 

over the whole planet and the collective improvement on those ideas will 

make it easier to reach global consensus about issues that concern every-

body. The free flow of information will make it more difficult for authori-

tarian regimes to plan suppression or war. The growing interdependence 

will stimulate collaboration, while making war more difficult. The more 

efficient economy will indirectly reduce the threat of conflict, since there 

will be less competition for scarce resources.  

Of course, communication alone cannot solve all the problems that 

threaten our planet: in the end, people will have to agree on concrete poli-

cies to tackle e.g. global warming or poverty. Yet, the global brain can 

support not only the process of reaching consensus on a plan of action, but 

also its practical implementation. For example, combating infectious dis-

eases or pollution will require extensive monitoring of the number of in-

fections or concentration of polluting gases in different regions. Informa-

tion collected by local observers or by electronic sensors can directly enter 

the global brain, be processed to reveal underlying trends, and be for-

warded to the people or institutions most suited for taking direct action.  

Similarly positive effects can be conceived in domains as diverse as health, 

well-being, democratic participation, sustainable development, work pro-

ductivity, disaster prevention and relief, education, research, innovation, 

industry, traffic, logistics, and ecosystem management (Heylighen et al., 

2013; Heylighen, 2002, 2007b, 2007b). There seems to be no end to the 

potential applications of a distributed intelligence system at the world 

level. Many of these applications are already becoming apparent in the 

present Internet, but their beneficial effect is held back by the general con-



fusion, information overload and uncertainty that accompanies the present 

explosion in new technologies and functions (Heylighen et al., 2013). It is 

to be expected that the overall benefits will multiply as the network be-

comes more streamlined and intelligent, and the agents using it more coor-

dinated in their activities. Then, only the sky will be the limit to what a 

global brain can achieve… 
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