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ABSTRACT:  Given that knowledge consists of finite models of an infinitely complex
reality, how can we explain that it is still most of the time reliable? Survival in a
variable environment requires an internal model whose complexity (variety) matches
the complexity of the environment that is to be controlled. The reduction of the infinite
complexity of the sensed environment to a finite map requires a strong mechanism of
categorization. A measure of cognitive complexity (C) is defined, which quantifies the
average amount of trial-and-error needed to find the adequate category. C can be
minimized by "probability ordering" of the possible categories, where the most
probable alternatives ("defaults") are explored first. The reduction of complexity by
such ordering requires a low statistical entropy for the cognized environment. This
entropy is automatically kept down by the natural selection of "fit" configurations. The
high probability, "default" cognitive categorizations are then merely mappings of
environmentally "fit" configurations.

1. INTRODUCTION

It is a recently popular trend to extend Darwin's evolutionary thinking from biology to
other disciplines. For example, evolutionary economics (Saviotti & Metcalfe, 1992),
evolutionary psychology (Buss, 1991), evolutionary computation, and the evolution of
chemical compounds or elementary particles following the Big Bang, have all become
fashionable subjects of study. One of the first of these new approaches is evolutionary
epistemology, which was first defined by Campbell (1974). Its main thesis is that all
knowledge is the product of variation and natural selection. This applies as well to the
primitive knowledge stored in the genes, which allows an organism to adapt to its
environment, as to the sophisticated theories of science, which undergo variation when a
scientist speculates and selection when inadequate theories fail to pass empirical tests.

The Principia Cybernetica Project (Heylighen, Joslyn & Turchin, 1991) aims to
carry the study of the evolutionary origin of systems to its logical end point. This means
that we should not restrict our analysis to one disciplinary level (cognitive, social, biolog-
ical, ...), but look at the interconnections between systems of different types, so that the
development of each level can be understood as a continuation of evolution at the level
below. In the limit, this should lead us to reconstruct the complete chain of variation and
selection processes producing complexity, from the appearance of elementary particles to
the intricate structures of present society. We have called this approach “Metasystem
Transition Theory” (Heylighen, Joslyn & Turchin, in print), emphasizing the sponta-
neous transitions to a higher (“meta-”) level, which form the quanta of evolution.

In the present paper I wish to apply this philosophy to the origin of knowledge,
however, not analysing the transitions that produced knowledge (this is being done
elsewhere, Heylighen, 1991a, in print), but studying the evolutionary preconditions that
make knowledge at all possible. A fundamental question every epistemologist should ask
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is the following: given that knowledge consists of extremely simple models of an
infinitely complex reality, how can we explain that knowledge is still most of the time
reliable? I will try to answer that question by linking the mechanism of default reasoning
to the natural selection of cognized phenomena.

2. SURVIVAL AS A CONTROL PROBLEM

Evolutionary epistemology (Campbell, 1974) assumes that the function of knowledge is
to secure the survival or “fitness” of an organism, by helping it choose actions adequate
for the given situation, while avoiding the risks of blindly trying out an action whose re-
sult may be fatal. To this analysis, cybernetics adds the premise that survival in a variable
environment is a control problem, which requires adequate compensation of perturba-
tions that make the system deviate from its goal (maintaining or increasing fitness).
Perhaps the most famous principle of control is Ashby's Law of Requisite Variety
(1958). It states that, in order to achieve complete control, the variety of compensatory
actions a control system is capable to execute must be at least as great as the variety of
perturbations that might occur. To that must be added Conant and Ashby's (1970)
principle that “every good regulator (controller) of a system must be a model of that
system”. Together, the two principles imply that perfect control can only be established if
there exists a one-to-one (bijective) mapping from the set of all possible perturbations to
the set of all counteractions the system can execute.

This isomorphism between perturbations and potential actions reminds one of the
classical reflection-correspondence theory, which sees elements of knowledge as “mirror
images” of objects in the world. The obvious question in this view is: how can an
infinitely extended world be isomorphically mapped onto a finite (and often extremely
simple) cognitive system? The traditional answer is that the concrete mapping is not
isomorphic (one-to-one) but homomorphic (many-to-one): most details or distinctions
about the world are filtered out. For example, two slightly different frequencies of light
will both be perceived as “red” and stored under that single heading in a person's brain.

However, under Conant and Ashby's analysis, many-to-one mappings, implying
loss of information, also imply loss of control: the less information survives the
mapping, the greater the variation in the outcome of the actions, and thus the larger the
fluctuation around the goal state. This relation between the varieties (V) of external
perturbations (E), actions (A), and outcomes (O) can be derived from Ashby's (1958)
law that “only variety can destroy variety”: V(O) ≥ V(E) - V(A).
 It implies that an infinite variety of perturbations, controlled by a finite variety of
actions, will still leave an infinite variety of outcomes. We must conclude that knowl-
edge, viewed as a finite map of an infinite territory, appears like a very limited tool for
achieving control. In order to explain why knowledge nevertheless seems so effective,
we must note several things:

1) Ashby's law of requisite variety should not be taken as an absolute requirement.
When the system is in a naturally stable state, the variety of outcomes will be automati-
cally decreased or damped, even without intervening actions (see my “principle of
asymmetric transitions”, Heylighen, 1992).

2) unlike the reflection-correspondence theory, the present cybernetic view of
knowledge does not assume a mapping between (static) objects and their representations,
but between (dynamic) perturbations and actions. But what constitutes a perturbation?
Apparently we only need to take into account processes that have a causal influence on
the system's goal. Replacing the absolute causality of classical mechanics, where every
event affects every subsequent event, by an irreversible, thermodynamic view of pro-
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cesses, we may conclude that most causal signals will be dissipated or damped before
they propagate to the system. In that case, what counts as “perturbations” will be a small
subset of all physical events that have direct causal links to the variables defining the
system's (subjective) goal.

3) even an infinite remaining variety of outcomes does not imply inadequate control,
as long as the few “essential variables” distinguishing between survival and death are
kept within bounds. For example, variation of the organism's horizontal position does
not much affect its chances for survival. Variation of its body temperature, on the other
hand, must be controlled within strict limits.

3. CATEGORIZATION AND DEFAULT REASONING

The above analysis argues that a small set of actions may still be sufficient to adapt to an
infinitely complex environment. But it does not explain how an infinite variety of phe-
nomena can be adequately mapped onto that small set. Every new phenomenon must
somehow be put in the appropriate category, which can then be linked to an action ade-
quate for that class of events. Perceived phenomena will activate simple sensory at-
tributes such as “hot”, “cold”, “red”, “heavy”, “loud”, etc. The function of the cognitive
system is to map specific combinations of these attributes onto more abstract categories,
which can then be interpreted in terms of required actions. E.g. the combination “hot”,
“high”, “light” may elicit the concept “sun”, which may trigger the action “go into the
shade”. In order to adequately steer the organism towards its goal of increasing fitness, a
maximum number of combinations of attributes must be put into categories denoting
possible dangers (e.g. fire, predators, cliffs, rivers, ...) or resources and opportunities
(e.g. food, mates, water, shelters, ...). As implied by Ashby's law, the larger the variety
of action-triggering categories available to the organism, the larger the control that it can
achieve, and thus the better it will succeed in maintaining or improving its fitness, and the
more likely that it will win the struggle for life. Evolution thus tends to increase the num-
ber of perceivable attributes and categories.

Even when the number of attributes is relatively small, the number of possible com-
binations will be virtually infinite. However, most of these combinations will not corre-
spond to categories relevant to the system's survival. For example, it may be essential to
distinguish a phenomenon with the attributes “moving”, “small”, “striped”, “yellow”,
“black” as belonging to the category “wasp”, linked to the action “avoid contact”. On the
other hand, combinations like “moving”, “large”, “green”, “purple” will never be en-
countered, and thus need not be represented by a particular action-triggering category.
Finally, a combination like “not moving”, “medium”, “brown” may be very common in
the environment (e.g. a piece of wood or a boulder), yet be totally irrelevant for the
organism's survival, and thus similarly escape categorization.

A basic mechanism for minimizing the complexity of categorization is default
reasoning. Each time a new combination of attributes is encountered, the organism must
find the appropriate category in which to fit the perceived phenomenon, in order to
further infer appropriate actions. The same combination might fit several categories, or
none at al. Rather than systematically test all categories (Is it a bird? Is it a plane? Is
it...?), the organism will immediately pick up the “most likely” category, until it
encounters evidence that another categorization is needed. It will then try out the “second
most likely” category, and so on.

The classical example of default reasoning is the assumption that if something is a
bird (earlier categorization or attribute), it can be expected to fly (inferred category). This
is probably true in over 99% of the cases. Yet, the existence of ostriches and penguins
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shows that this is not a universal truth. Violations of the default expectation will be en-
coded in the cognitive system as exceptions: if it is a bird, then it can fly, except if it is
penguin or an ostrich. But the awareness of the “exceptional” situation will trigger new
default expectations: if it is an ostrich, then it can run; or, if it is a penguin, then it can
swim. Again, there will be exceptions to these rules: if it is an ostrich, and it has a broken
leg, it cannot run. But that expectation might in very unusual circumstances again be vio-
lated: perhaps an ostrich with a broken leg could still run if it was wearing some kind of
artificial support...

The system behind this type of reasoning may be called a default hierarchy (Holland
et al., 1986): it consists of different levels of expectations, the most likely one at the top,
the less likely below. As ones goes deeper down into the exceptions and exceptions to
exceptions, more attributes are added to the necessary conditions, and thus triggering
conditions become more specific, and less probable. (After all, it would be quite unlikely
to encounter an ostrich wearing a support around its broken leg...).

4. COMPLEXITY OF DECISION-MAKING

Let us define the complexity of decision-making or categorization as “the average number
of alternatives (categories) that need to be explored before the appropriate one is found”.
This seems like a good measure for cognitive effort, amount of trial-and-error, or time
spent searching. It is similar to the measure assumed by Simon (1962) in his famous
paper on the “Architecture of Complexity” when arguing that hierarchical decomposition
enormously decreases the complexity of problem-solving (see also Heylighen, 1991b).
We will now produce a similar argument for probability ordering

Suppose you get information about an object with wings, and try to find out what
type of object this is. Likely assumptions are that it is a bird or an insect. Less likely but
still reasonable alternatives are a plane or a bat. Still more improbable is a pterodactyl, a
flying lizard, or a flying fish. But you might of course also consider a harpy, a dragon,
or the flying horse Pegasus... None of these possibilities can be absolutely excluded. Yet
it obviously pays to first start looking whether the creature has feathers (implying that it
is a bird), before you would check for hooves.

Let us consider the set of alternatives {an | n=1, ..., K}, each with probability P(an).
If the an are explored in the order of increasing n (first, alternative a1 is tested, then a2,
then..., until aK), the search will be successful after exactly one step with probability
P(a1), after two steps with probability P(a2), and so on. The number of steps that can be
expected to be necessary on average, i.e. the complexity of decision-making, is then de-
termined by the following formula:

C = P(an ).n
n=1

K

∑ (1)

This complexity depends on two separate factors:
1) the ordering of the an: since the contribution of an alternative to complexity in-

creases linearly with its rank (n) in the sequence, one can obviously minimize complexity
by associating large n's with small P(an)'s, thus diminishing the effect of large ranks.
The minimum of C for a given probability distribution will be reached if the terms are
completely ordered according to decreasing probability: P(ai) ≤ P(aj), for all 1 ≤ i < j ≤
K . Indeed, if for some i<j we would have P(ai) > P(aj), then C could be diminished with
the positive amount (i-j)(P(ai) - P(aj)) by permutating the probability values of the i-th
and j-th terms.
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The strength of the decrease in complexity produced by probability ordering can be
illustrated by the following example. Consider an infinite sequence where each next
alternative (an) is a factor d (d < 1) less probable than the preceding one (an-1). Given the
constraint that the sum of all probabilities must be 1, this leads us, after a few calcula-
tions, to the following complexity expression:

C = n
dn

dn

n =1

∞

∑n=1

∞

∑ =
1

1 − d
(2)

For d = 0.5 (every next alternative half as probable as the previous one, a seemingly not
very strong requirement), we get C = 2, i.e. the search through an infinite list of alterna-
tives will be finished on average after just two steps! Yet, if the ordering would have
been random, the search would have been infinite. For d = 0.9, we have C = 10. (If we
would start from a normal (Gaussian) distribution of probabilities, C would be even
smaller, as each subsequent probability factor will decrease not just with dn but with
dn2.)

2) the distribution of probabilities P(an): if all probabilities would be equal, P(aj) =
P(ai) = 1/K  for all 1≤ i, j ≤ K , then there would not be any beneficial effect of ordering
according to increasing P values, and C would reach a maximum value:

C =
1

K
n

n=1

K

∑ =
K +1

2
(3)

This value expresses the idea that if all alternatives are equiprobable (or, equivalently, if
they are randomly ordered so that large probabilities are as likely to be encountered in the
beginning as in the end of the sequence), we would on average need to explore half of all
the alternatives in order to find the appropriate one. Since we are discussing situations
where the number of possible categories (K) is virtually infinite, this means that C itself
becomes infinite.

On the other hand, if, given perfect ordering, all probabilities were zero except one
(P(a1) = 1), the first alternative explored would always be the right one, and complexity
would reach its minimum: Cmin  = 1. These maximum and minimum values for C as a
function of the P(an) distribution (given optimal ordering) correspond respectively to the
maximum and minimum of the statistical entropy (H) for the distribution:

H = − P(an
n=1

K

∑ ).log P(an ) (4)

Though it remains to be formally proven, it seems safe to conjecture that for perfect or-
dering C will increase monotonically with increases in H. Indeed, increases in entropy
imply a more homogeneous probability distribution, i.e. smaller differences between the
different P(an), and thus larger values for the smaller P(an) (corresponding to large n).
This implies that the terms with larger n's in the complexity function will carry a larger
weight (which is not compensated by the correspondingly smaller weight of the terms
with small n's), increasing the sum which defines C.

In conclusion, cognitive complexity of choice between a given number of alterna-
tives K will decrease with the goodness of ordering of the alternatives according to prob-
ability, and (given ordering) increase with the entropy (homogeneity) of the probability
distribution. There are thus two ways to keep complexity small:
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1) Good ordering: this is a factor which depends on the organism's capacity to
learn, i.e. to store its experience as to the frequency with which a particular alternative is
encountered. It is well-known that past frequency of occurrence, implying likeliness of
future occurrence, is a fundamental determinant of learning. For example, associative
learning in conditioning experiments or in neural network models assumes that a learned
association (if “bird”, then “flies”) becomes stronger the more often its is activated. The
“strength” of a connection determines the likeliness that the connection is later activated,
and thus the (average) speed with which the alternative represented by that connection is
explored.

2) Low entropy: this is a factor which partly depends on the organism, partly on
its environment. In a high entropy environment, where all types of phenomena or
situations are about equally likely, cognitive complexity would be maximal, and control
through knowledge would be virtually impossible. In a “mixed entropy” environment,
where some types of phenomena are equally likely, while others have strongly
differentiated probabilities, cognitive complexity could still be kept within bounds by
ignoring or filtering out all the high entropy categories. This is not a problem if the
eliminated categories correspond to those variables which are irrelevant to the organism's
fitness. For example, the Brownian motion of air molecules against one's skin is a
largely entropic phenomenon, where it is practically impossible to predict the direction of
the next motion given the present one. Yet the pressure exerted by this Brownian motion
can be neglected as far as survival is concerned, and thus adequate cognitive modelling,
enabling prediction and control, is not necessary.

5. FITNESS AS DEFAULT

Our analysis still implies that at least the variables relevant to survival should have a low
entropy. This is not at all obvious, given the 2nd Law of Thermodynamics, which states
that thermodynamic entropy tends to spontaneously increase. However, I have argued in
an earlier paper (Heylighen, 1992) that increase of thermodynamic entropy can still be
accompanied by decrease of statistical entropy (the necessary and sufficient condition for
a Markov process to allow decrease of statistical entropy is that its transition matrix not
be doubly stochastic (Koopman, 1978)). The present conclusion about cognitive com-
plexity can be interpreted as a further, indirect argument against the common belief that
the most “natural” state of the world is one of high entropy. If that were true, knowledge
and control could never have developed.

The principle of asymmetric transitions (Heylighen, 1992) states that systems tend to
“settle down” in their most stable (attractor) states, thus leaving the less stable states
(attractor basin). (this automatically invalidates the requirement of double stochasticity
necessary for entropy increase). This implies that the former states (say a1 to al) will be
encountered with a much higher probability than the latter ones (say al+1 to aK), a condi-
tion sufficient to allow complexity reduction by probability ordering of alternatives.

What was called “stability” when discussing asymmetric transitions, is perhaps more
properly called “fitness”. Fit configurations can be defined as configurations picked out
by natural selection. This may happen because they are intrinsically stable, or because
they are (re)produced in great quantities. Selection entails a fundamental asymmetry be-
tween fit and unfit systems: fit systems are naturally privileged, and are much more likely
to be encountered than unfit ones.

In conclusion, the evolutionary principle of the “survival of the fittest” explains the
existence of alternatives that are much more likely than others, playing the role of the “de-
faults” we introduced earlier. Thus, the most fundamental type of default assumption is
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that most likely a phenomenon is fit. This agrees with intuition. For example, lame os-
triches or penguins unable to swim are clearly unfit, and will not survive very long as
such: either the penguin will learn to swim, or it will die because of starvation, not being
able to catch fish. More generally, given the constraint that a system is a bird (having
wings and feathers), we may assume that it will be most fit when it can fly, though there
are exceptional niches, occupied by ostriches and penguins, where flight is not necessary
for fitness. The “defining features” of a particular category (e.g. birds) determine a lim-
ited domain of “fit” configurations. Most instances of the category will be kept within
that domain by natural selection, and this explains the adequacy of default assumptions
about members of that category.

Though the example of birds is typical for the predominantly biological interpretation
of natural selection, the proposition is much more general. A physical example: “stones
are hard” is a typical default assumption. For stones, hardness is a part of fitness: soft
stones will tend to pulverize or crumble under the effect of erosion, and, hence, will be
quickly eliminated. Therefore, the “abstract” default assumption that a stone is fit, implies
“concretely” that it is hard. Another example, “water is liquid”, reminds us that fitness is
relative to the environment: this assumption is valid only in the more common situations
where temperatures are in between freezing and boiling. Under such temperatures, non-
liquid forms of water (ice, steam) are unstable, and will be eliminated. Finally, a
psychological example: “people understand language”. In our present society not being
able to understand language is clearly unfit: either the individual (e.g. a baby) will be
taught language understanding, or he or she will get isolated (e.g. in a home for the
mentally handicapped).

Not all configurations one encounters will be fit, however: variation will continu-
ously produce fluctuations or deviations from the “normal”, fit configuration. Most of
these “mutations” will be quickly eliminated, except when they discover a new niche or
fitness domain, like the ones occupied by penguins or ostriches. That is why default
assumptions remain just that, they do not become “absolute truths”, and for every rule
there will always be an exception.
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