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Hypergraph

Hypergraph

Hypergraph (V ,E ), vi ∈ V node, Ej ∈ E subset of V

matrix of weights W

(W )ij = weight of vertex vi in edge Ej

can be represented by bipartite graph with 2 kind of nodes
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Hypergraph

Learning

Delta learning:

Wij ←Wij + r(||c|| − ||fa(c)||)

Variation+selection: add/delete nodes

fitness(Ej) =

∑
||c|| − ||fa(c)||

|Ej |

mutate(Ej) ∼
1

fitness(Ej)
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Scale-free: power-law in degree-distribution of nodes and
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Hypergraph

Topology

Scale-free: power-law in degree-distribution of nodes and
edges

Centrality:

Eigenvector centrality
General centrality c(α, β)



Centrality

Eigenvector centrality

Graph Hypergraph
λei =

∑

j Wijej xi = c1
∑

j Wijyj

yj = c2
∑

i Wijxi

λe = W e WW Tx = λx

W TW y = λy

with λ = c1c2



Centrality

General centrality

Graph Hypergraph

ci (α, β) = α
∑

j

Wij

︸ ︷︷ ︸

degree

+β
∑

j

cjWij

︸ ︷︷ ︸

eig. centr.

xi = α1

∑

j Wij + β1
∑

j Wijyj

yj = α2

∑

i Wij + β2
∑

i Wijxi

c(α, β) = α(I − βW )−1W1 x = α1W1+ β1W y

y = α2W
T1+ β2W

Tx
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Centrality

Communication in graph

c(α, β) = α

+∞∑

k=0

βkW k+11

β = chance message passed

⇒ c(1, β) =
∑+∞

k=0 β
kW k+11

= |communications of individual|:
W1 = paths of length 1;
βW 21= communications of length 2; ...

our model: β = chance challenge chosen



Centrality

Communication in hypergraph

x = α1

+∞∑

k=0

(β1β2WW T )kW1+ α2β1

+∞∑

k=0

(β1β2)
k(WW T )k+11
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Centrality

Communication in hypergraph

x = α1

+∞∑

k=0

(β1β2WW T )kW1+ α2β1

+∞∑

k=0

(β1β2)
k(WW T )k+11

Hypergraph → Graph

W → WW T

α1 = 0;α2 = 1;β1 = 1⇒ β2 = chance challenge selected;

⇒ x =
+∞∑

k=0

(β2)
k(WW T )k+11



Centrality

Communication in hypergraph

General, α1 = α2 = 1: β1 = chance edge select challenge;
β2 =chance node select challenge

x =
+∞∑

k=0

(β1β2WW T )kW1
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communications to edges

+β1

+∞∑

k=0

(β1β2)
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︸ ︷︷ ︸

communications to nodes



Centrality

Communication in hypergraph

General, α1 = α2 = 1: β1 = chance edge select challenge;
β2 =chance node select challenge

x =
+∞∑

k=0

(β1β2WW T )kW1

︸ ︷︷ ︸

communications to edges

+β1

+∞∑

k=0

(β1β2)
k(WW T )k+11

︸ ︷︷ ︸

communications to nodes

k = 0 in 1st W1 comm. to neighbour edge
k = 0 in 2nd β1WW T1 comm. to neighbour nodes
k = 1 in 1st β1β2WW TW1 comm. to edges at distance 2

...
...

...
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Direct hypergraph: matrix Z of weights from edges to nodes
instead of W T
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Improvements

Improvements

Direct hypergraph: matrix Z of weights from edges to nodes
instead of W T

β̄2(c) instead of β21: 1 if node select challenge

learning: add nodes depending on how much they add:
β2WW TW = chance communication from node to edge in 1
step



End

Thanks!

Questions?
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