The Global Brain Institute

GBI: first results and prospects *Francis Heylighen*

Vrije Universiteit Brussel

What is the Global Brain?

Distributed Intelligence

- Ability to solve problems
- Not centralized or localized in a single agent
- Many agents contribute to the solutions
 - "society of mind"
- Potentially much smarter than any individual intelligence

• As emerging from the Internet

- People, machines, and software
- Connected by a network of links
- Extending globally

Global Networks

The Global Brain Institute (GBI)

Founded January 2012

- At the VUB
- Director: Francis Heylighen
- Main sponsor: Yuri Milner
 - Investor in social media: Facebook, Groupon, Twitter, etc.

• Aim

- To develop a general theory of the Global Brain
- Supported by a mathematical model

Prehistory

- Global Brain Group
 - Founded 1996 by Francis Heylighen and Ben Goertzel
 - International discussion forum
 - Grouping most active researchers in the domain
- Organized first Global Brain Workshop
 - VUB, July 3-5, 2001
- Still maintains GBRAIN-L mailing list

Present GBI personnel

Researchers (with their education)

- Eva Busseniers: mathematics
- Viktoras Veitas: management, AI
- Clément Vidal: philosophy, cognitive science
- David R. Weinbaum ("Weaver"): computer engineering
- **Mixel Kiemen**: computer science, economics
- *Iavor Kostov* (not yet at VUB): engineering

GBI Scientific board

- Johan Bollen (Indiana University)
- Joël de Rosnay (Biotics International)
- **Cliff Joslyn** (Pacific Northwest National Laboratory)
- **Carlos Gershenson** (Universidad Nacional Autonoma de Mexico)
- Ben Goertzel (Singularity Institute for Artificial Intelligence)
- Marko A. Rodriguez (Aurelius LLC)
- ? Thomas Malone ? (invited, MIT)
- ...?

Tools used by the GBI

- Public website
 - www.globalbraininstitute.org
 - People, publications, working papers, videos, newsfeed...
- Private website
 - intranet.globalbraininstitute.org
 - Work-in-progress, discussions, issue queue...
- Private mailing list: gbi@listserv.vub.ac.be
- Shared bibliography (Zotero)

GBI Working Papers

- Preliminary reports on on-going research
- Heylighen F.
 - The GBI Vision: past, present and future context of global brain research
 - Challenge Propagation: a new paradigm for modeling distributed intelligence
- Weinbaum, D.
 - A Framework for Scalable Cognition
- Busseniers, E.
 - Hierarchical organization vs. self-organization
- Heylighen F., Kiemen M., & Kostov I.
 - Mobilization Systems and the Stigmergic University

GBI Objectives

- Develop a theory of the Global Brain
- Build mathematical model / simulation
- Survey relevant social/ICT developments
- Compare observations with
 - implications of theory
 - simulation results
- Investigate implications for the future
- Disseminate ideas towards the public

The GBI view of intelligence

Intelligence = ability to deal with challenges

- Challenge = situation that invites action
 - Problem, opportunity, question, stimulus, idea, information...
- Successful action improves situation for agent
 - Solves problem, exploits opportunity, ...
- High intelligence = high extraction of benefit
- Intelligence requires
 - Selection of most important challenges
 - Selection of most appropriate actions

Distributed Intelligence

Individual agent has limited abilities/knowledge

- Cannot always recognize most important challenge
- Cannot always select best action
- Cannot always implement best action
- Different agents have different skills
 - The one may be able to do what the other cannot
- Solution: distributed intelligence
 - Different tasks performed by different agents
 - Results integrated into global solution

Origin of distributed intelligence

Guided: mobilization systems

- Agents are stimulated or motivated to act
 - By presenting clear goals and feedback
- System is organized so as to facilitate coordinated action

• Spontaneous: self-organization

- Challenges propagate across different agents
 - Until they are fully resolved
- Links between agents adapt to use
 - Strengthening of useful links, weakening of others

Challenge Propagation

- Each agent extracts the benefit it can get from the challenges it encounters
- Challenges that that still have benefit left are passed on to other agents
 - In the agent's "(social) neighborhood"
 - So that they can extract more benefit
- Thus, challenges propagate from agent to agent
 - Generalization of "spreading activation" in a neural network

Examples

- Question, observation, link, idea, opportunity...
 - Emailed to friend(s)
 - Posted in discussion forum
 - Posted as Facebook "status update"
 - Distributed as "tweet"
 - Written down in wiki
- Forwarded, reposted, retweeted ... to others
- Elicits reactions, suggestions, corrections...

Application: GBI issue queue

• GBI researchers posts "issue" on intranet

- Problem or opportunity to advance
- Demands action
 - E.g. read book, invite person, organize seminar,...

Other GBI researchers pick up the issue

- Either by spontaneously checking the queue
- Or being warned about a relevant issue
- Contribute to tackling it
- Until the problem is solved

Application: GBI Newsfeed

- People publish info on the web
- Filtering rules/volunteers extract potentially relevant ones
 - Using keyword such as "global brain", "collective intelligence", etc.
 - Suggest them to "curator"
- Curator selects most interesting ones
- Selected posts are published on GBI site
 - Where readers may pick them up and forward them further

Any questions?

- Theory and specific applications will be discussed in more detail later...
- Now is the time to discuss our general organization

The Global Brain Institute

Challenge Propagation: towards a mathematical model *Francis Heylighen*

Vrije Universiteit Brussel

Basic concepts of the GB

- Agents: human or machine
 - Agents act on challenges
- Challenges : generalization of problems and opportunities
- Intelligence: ability to successfully tackle challenges
- Distributed intelligence: challenges tackled collaboratively by many agents working in parallel
 - Requires diversity of agents/skills/situations
 - Requires coordination of actions

The need for a mathematical model

- We want to understand exactly how distributed intelligence operates
- So as to compare:
 - Different propagation methods
 - E.g. email, Twitter, Facebook updates, wiki edits...
 - Different network topologies
 - Different agent abilities, ...
- In particular, to measure relative intelligence
 - Allowing us to optimize existing systems

Restrictions of modeling

- A model is always a simplification
 - It needs to reduce an infinitely complex reality to a finite list of symbols and numbers
 - That are easy to manipulate
 - So as to compute different implications or forecasts
- Yet, the model should try to maintain the essence of the theory
 - While remaining flexible enough to accommodate new insights

Challenge propagation

- Challenges propagate from agent to agent
- Following links in a network
- Challenges get "relaxed" while propagating
 - Spreading activation dynamics
 - From "tension" to "equilibrium"
 - But the system as a whole remain far-from-equilibrium
 - Because new challenges are constantly generated

Neural Network Paradigm

- Input activation vector = "challenge"
- Output activation vector = "solution"

Challenges as vectors

- Situation vector:
 - List of numbers representing the present situation
 - E.g. (4, 0, 0.3, 2.4, 7.23, ...)
- Need vector: \mathbf{g}_i
 - List of numbers representing the ideal situation for a given agent a_i
- Challenge = difference between situation and need vectors

$$\mathbf{c}_i = \mathbf{s} - \mathbf{g}_i$$

Vector components

- Numbers in the list represent "valences"
 - Variables that potentially carry some value (positive or negative) for the agent

• The need vector can also contain # symbols

- "don't care"
- Representing a variable that is irrelevant for that agent

• The situation vector can also contain ? symbols

- "don't know"
- Representing a variable of which the agent does not know the value
- Addition rules:

$$# + X = #$$
 ? + X = X (?)

Challenge Selection

- Agents are confronted with many challenges
- They need to choose the most important ones to address
- Selection criteria

– Intensity of the challenge c:

$$\|\mathbf{c}\| = \sqrt{\sum_{i=1}^{n} c_i^2} \ge 0$$

(# counts as 0 in the formula)

- (? counts as > 0, dependent on need variable?)
- Ability of agent to tackle the challenge
- Others?

Processing in the Agent

• An agent *a* performs a mapping from the initial challenge **c** to the processed challenge **c**' :

 $\mathbf{f}_a: \mathbb{R}^n \to \mathbb{R}^n: \mathbf{c} \to \mathbf{c'} = \mathbf{f}_a(\mathbf{c})$

Agents can be programmed using various formalisms

- Neural networks, production rules, heuristic search...
- Different agents perform different processes

Challenge relaxation

- The agent tries to bring the present situation closer to the desired one
 - by transforming the challenge vector: $c \rightarrow c'$
 - Tackle the problem
 - Exploit the opportunity
- Ideally, the challenge vector is reduced to zero

c' = s' - g' = 0

 Practically, the agent only extracts partial benefit from the challenge:

 $c' \neq 0$

Benefit = $|| c || - || c' || \le || c ||$

Challenge propagation

- A processed challenge can be passed on to one or more connected agents
- These agents can decide to further process
 the challenge
 - Depending on link strength and challenge intensity
- And pass it on their connections
 - Thus, it spreads continuously throughout the network
- The process continues as long as there remains benefit to be extracted from the challenge

Challenge Propagation

Relaxation Process

- Challenge propagation is similar to a physical process of "relaxation"
 - A disequilibrium or tension is gradually reduced
 - Potential Energy Gradient = Force
- Examples
 - Potential difference produces electrical current
 - Propagation of action potential in the brain
 - A wave spreading in water or air from the place of disturbance

The Learning Network

Challenges propagate via "multilinks"

- Conduits that connect two or more agents
- E.g. social relationship or forum

• Agents + multilinks form network

- Generalization of social network
- Links have different weights, representing reliability of connection

Network adapts to propagation

- Successful links are strengthened
 - E.g. friendship or collaboration
- Unsuccessful ones are weakened or eliminated
- Thus, the network "learns"
 - Increases distributed intelligence

Network with multilinks

Measuring Distributed Intelligence

- Intelligence I = success in extracting benefit from challenges
 - Individual intelligence = average benefit for one agent
 - Distributed intelligence = average benefit for agent collective

$$I = \frac{1}{n} \sum_{i=1}^{n} \left(\left\| \mathbf{c}_{i} \right\| - \left\| \mathbf{f}_{a}(\mathbf{c}_{i}) \right\| \right)$$

- calculated on the basis of a finite (but large) sample of randomly generated challenges: $\{c_1, c_2, ..., c_n\}$
- Depends on: agent abilities, network topology, propagation dynamics, selection criteria...

The next step

Building a simulation

- Agents with specific processing abilities
- Connected by multilink network
- Random generation of challenge vectors
- Letting agents select, process and propagate challenges
- Measuring distributed intelligence of system
- Trying out many different variations of these elements
 - So as to see which works best