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Abstract: Brains are information processes that learn behaviors effective for promoting some set of values, typically including their own survival and propagation. The obvious example of such information processes are animal and human brains. Other examples include genetic evolution, some social processes, and intelligent machines which are anticipated to exist within the next century. Analyzing these brain processes can help us understand a global brain process that will emerge as the symbiosis of machine learning and simulation capabilities, and human values. This evolution will pose serious public policy questions.


Humans are distinguished from other animals by the ability of their brains to process information. Many animals exchange and process information in social groups, but humans do it most efficiently because of their language abilities. Technology is extending information exchange and processing to all of human society. Do social information processes, especially the global one, resemble individual brains? What are the implications of such an analogy for social change?

Animal and human brains


All animals must sense (i.e., gather information) and act on the world. An animal’s ability to survive and reproduce depends on its ability to process sensed information to take appropriate actions. This created pressure for the evolution of brains, which occurred in the following general stages [1, 2, 3, 4]:

1.
Nerve cells formed connections between sensing cells and acting cells, with fixed behavioral responses to sensory stimuli.

2.
Networks of nerve cells (i.e., brains) learned behaviors in response to sensory stimuli, reinforced by values (i.e., rewards) such as “eating is good” and “pain is bad.” Positive values strengthen behavioral responses and negative values weaken them.

3.
Brains simulated the world (i.e., brains started processing experiences that were not actually occurring) in order to begin solving the credit assignment problem (CAP). This is the problem of reinforcing behaviors when rewards occur significantly later than behaviors, and multiple behaviors occur before rewards. Computer learning algorithms that efficiently solve the CAP create simulation models of the world in order to estimate cause and effect relations between behaviors and rewards (even so-called “model-free” algorithms include models of world states and process states that are not occurring). Human and animal brains need simulation models too. They give humans the inner mental life that was missing from early behaviorist theories.

4.
Brains evolved increasingly sophisticated simulation, such as reasoning, planning and simulating the brains of other animals, and increasingly sophisticated reinforcement values, such as social values for teamwork. Simulation by human brains is continuing to improve via cultural and technological evolution.


Early artificial intelligence research to emulate the behavior of brains failed to take this evolution into account, focusing directly on symbolic reasoning and ignoring the way that such high level behaviors emerge from low level sensory and physical behavior. The results of this research were disappointing, and Hubert Dreyfus provided a critical analysis of the “grounding problem”, which is the need to relate symbols to sensory experience [5]. For example, the word “horse” is a symbol, and robust reasoning about horses must ground the word “horse” in terms of sensory experiences of horses.


The grounding problem also applies to the way reasoning and planning emerge from learning. To get a feel for this, consider that when humans confront novel situations they consciously plan their behaviors, based on simulated scenarios. As they repeat the situation and it is less novel, those planned behaviors become unconscious. Furthermore, those learned unconscious behaviors become part of the repertoire for future planning. This relation between planning and learning is illustrated by the development of a beginning chess player into a chess master. A beginner's plans may include as many alternatives as a master's, but the master's plans are in terms of a repertoire of behaviors learned through lots of previous planning and reinforcement.


Reinforcement learning values are essentially what we call emotions [6, 7]. Our own mental lives seem to have meaning that transcends mere information processing, and that sense of meaning comes from the emotional values that we attach to situations. Because logic is grounded in learning driven by emotional values, there is no way for a brain to be purely logical, divorced from emotion. The distinction between emotion and logic is actually a distinction between short and long term. Logic is the simulation that brains use to predict the long term consequences of their behaviors, but the same emotional values are used to reinforce behaviors for both short and long term consequences.

Genetic Brains


Genetic evolution is an information process that satisfies some of the criteria of a brain. Individual genes correspond to behaviors. The values are survival and reproduction of genes. Genes are reinforced by their frequency of occurrence in the population, determined by the survival and reproduction of individuals carrying those genes.


Genetic evolution does not simulate. Rather, evolution solves the CAP statistically, over large populations and many generations (with sexual reproduction producing random combinations of genes in the population). Computer algorithms for reinforcement learning without any simulation (i.e., the genetic approach) are much less efficient than algorithms that include simulation. But information processes operating over large populations and many generations don’t need to be efficient.


Although genetic evolution does not explicitly simulate to solve the CAP, symbiotic relationships among different organisms are a way of allocating credit (i.e., sharing nutrition value up a food chain) and implicitly modeling the relation between behaviors and credits [8]. For example, animals, with their mobility and brains, could not exist without plants to convert sunlight and soil into food they can use. Many more detailed symbiotic relationships exist.

Social Brains


In order to identify social structures as social brains, we need to answer the following questions about them:

1.
What are their values?

2.
How are behaviors reinforced?

3.
How do they solve the CAP?


The values of corporations are profits. Behaviors are reinforced by rewarding and punishing individual employees or whole departments, including the possibility of terminating employees or departments. In order to solve the CAP, accounting procedures trace and allocate profits back to employees and departments. These accounting procedures are a kind of simulation model of corporate activities. More advanced types of simulation include modeling hypothetical corporate actions and results in a way analogous to human planning.


The values of governments are political power, primarily acceptance by the governed population (willing or coerced), but also including influence over other governments. In democracies, behaviors are reinforced by election of candidates, who pass the reinforcement on by increasing and decreasing different government activities. The effect of democratic elections is to make government values equivalent to the values of the majority of voters (usually sampled infrequently). In dictatorships, the dictator himself is very hard to reinforce, so reinforcement values effectively become the personal values of the dictator. In democracies, voters solve the CAP individually and in voting blocks, according to their own understanding of the effects of various government activities, and each apply the results independently by their votes. Each voter’s simulation includes great detail about the effects of policies on him or herself, and the average among all these models may be an accurate gauge of overall social welfare. Also, democratic and non-democratic governments create numerous simulation models, such as econometric models and war games, and use these to find behaviors that will produce results satisfying the values of the voters or the dictator.


A free market is like genetic evolution, composed of interacting individuals, with values and reinforcement applied to those individuals. The values are the wealth and profits of individual enterprises, which are reinforced by their success or failure. Similar to genetic evolution, free markets don’t have any central simulation for solving the CAP, but distributed simulations emerge as cooperative and symbiotic relations among enterprises [8]. Rewards (i.e., money) are not allocated according to any central simulation. But enterprises supply each other with intermediate products (e.g., steel companies sell to car companies rather than consumers), and share rewards (e.g., part of the money consumers spend on cars goes to steel companies). These relations form an implicit model of the ways behaviors cause rewards. Furthermore, communications among enterprises in free markets tend to create an emergent global simulation from the simulation models of individual enterprises. For example, input to a manufacturer’s simulation model may include an estimate of future demand for its products, gotten by polling customer enterprises whose answers are generated from their own simulation models.


Some visions identify the global brain as a super-intelligent information process that emerges from the interactions of the billions of humans on earth, with technology providing communications among humans but not providing machines that are intelligent in their own right. We may call this a “purely social” global brain. A key question is how a purely social global brain would mix the approaches of genetic brains, without simulation, and of animal brains, with simulation, for solving the CAP. Studies of animal brains show that the diameter of their neural networks (defined as the average number of links that have to be followed to move between any two neurons) remain constant as the number of neurons increases [9]. This requires that as the number of neurons increases, the communications capacity of individual neurons (defined as the number of links to other neurons) must increase. But humans have a fixed communications capacity, with biologists estimating that humans can know only about 200 other humans well [1]. This analogy with animal brains suggests that the complexity of simulations, in an animal brain approach to a purely social global brain, are limited by the communications capacity of individual humans. But humans are already overloaded with information, at least in industrial societies. Alternately, the intelligence of the genetic approach to a purely social global brain, relying on statistics rather than central simulation for solving the CAP, depends on the size of the human population, which is predicted to level off during the next century. Using either approach, a purely social global brain is unlikely to achieve much greater intelligence than current governments, corporations and free markets.

Machine Brains


The successes of artificial intelligence research have been limited to very specialized behaviors like playing chess, proving theorems and investing, without anything resembling general human intelligence. However, the progress of neuroscience in finding detailed correlations between physical brain functions and mental behaviors makes it clear that brains do explain minds and that physical implementations of intelligence are possible. Furthermore, the complexity gap between human brains, with their 100 billion neurons and 100 trillion synapses, and current computers is a reasonable explanation for the failure to produce true intelligence in machines. The relentless progress of technology will produce machines with complexity equal to human brains. Some scientists think this will happen by 2020 or 2030 [10]. I think those estimates are too optimistic, but that machines will surpass human intelligence by 2100 [11].


One important result of artificial intelligence research has been the importance of reinforcement learning (or supervised learning, which is essentially reinforcement learning with an external source of reinforcement) for achieving success with even specialized behaviors. And in complex learning environments, like the real world, efficient reinforcement learning requires simulation for solving the CAP. Furthermore, the formal model of intelligence defined by Kolmogorov complexity and Solomonoff induction [12, 13] employs reinforcement learning and simulation (in the form of Turing machines that simulate the observed external world). Thus both theory and practice suggest that machine brains will need to employ reinforcement learning and simulation, as human and animal brains do. Although there are no current computer algorithms for reinforcement learning general enough to deal with arbitrary real world problems, research is very active [8, 14, 15] and algorithms for general intelligence should exist before 2100.


The current computer environment is increasingly social. Almost all the computers in the world are connected together in the global Internet, and employed by humans primarily for communications. The next great surge in computer use, beyond the PC, is the migration of computer chips and Internet connections into phones, palm computers, televisions, cars, and other objects of daily use. The primary motive for developing intelligent machines will be to provide services over this extended Internet, such as:

1.
Sales. Rather than interrupting entertainment with ads, they will judge our emotions and know the right moment to ask “Want me to order a pizza?”

2.
Multi-player computer games. These will be like participatory movies. Even before the development of true machine intelligence, these will be the entertainment medium of the 21st century just as movies and TV were the media of the 20th.

3.
Companionship. This will be a sympathetic machine to talk to, or a machine that knows everyone and can act as matchmaker for romance or just common interests.

4.
Monitoring crime and health. This will be big brother perhaps, but with privacy controls in democratic societies.

5.
Work. These will support not only mobile work by humans, but give humans more leisure by simply doing almost all the work. The promise of wealth without work will be humanity’s driving motive for building intelligent machines.


The quality of all these services will be improved by increasing the number of people that intelligent machine servers know. Whereas humans are limited to knowing about 200 other people well, with improving technology there should be no limit on the number of people that machines can know well. The ability to know billions of humans will define a level of intelligence far beyond humans. They will be able to simulate all these humans and their interactions in detail, where current sociologists, economists and politicians must rely on statistical population models. Knowing all humans well, understanding all their interactions, and simply superior intelligence will give machine brains the power to manipulate human society. How can human society protect itself against misuse of this power?


One approach would be to place restrictions on their behavior such as Asimov’s Laws of Robotics [16]:

1.
A robot may not injure a human being, or, through inaction, allow a human being to come to harm.

2.
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

3.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

The problem is that laws are inevitably ambiguous and require intelligent judgement for their application (rendered by judges, of course). This would be trouble in a world where the most intelligent brains belong to the machines that humans are trying to restrict.


However, since machine brains will be designed by humans, we will be free to design them with whatever reinforcement values we choose. Rather than restricting machines from acting against human interests, we can design them to not want to act against human interests. Intelligent machines will be built by social organizations, and the obvious candidates for their reinforcement values will be the values of those organizations. These would be profits for corporations, political power for governments, and victory for militaries. But such narrow values will pit the interests of machines against the interests of most humans, with humans the inevitable losers.


The solution is to find values for machine brains that are aligned with the values of all humans. Humans express happiness when their positive values are met, and express unhappiness when their negative values are met. Thus to align machine and human values, machine brain behaviors should be positively reinforced by expressions of human happiness, and negatively reinforced by expressions of human unhappiness. There is already research in specialized algorithms that learn to recognize emotions in human facial expressions, voices and body language. It should not be difficult to encode the results of such research as the reinforcement values for intelligent machines.


Of course, there are inevitable conflicts of interest among humans, where it is hard to maximize the happiness of all parties. But just as humans learn intelligent behaviors for balancing conflicts among their personal values, machine brains will learn to balance conflicts among their values for the happiness of each human. One purpose of super-intelligence will be to find win-win solutions to human conflicts. Research on the way that mothers resolve conflicts among their children may be useful here.


Whereas human and animal values are mostly for self interest [2], such values can and should be left out of the designs for machine brains. However, brains need accurate simulation models and so need to positively reinforce simulation behaviors that make accurate predications. This is a type of self-interest value necessary for efficient learning. It is inevitable that any brain must learn to predict the world in order to fulfill its primary values. The key is that the primary values being fulfilled by intelligent machines are in human interests.

The Symbiotic Global Brain


Machine brain reinforcement values for human happiness essentially equate machine values with human values. This creates a symbiotic brain that combines the superior simulation modeling and reinforcement learning abilities of the machine brain with the reinforcement values of human brains. This symbiotic brain is what should be called the global brain.


The values of the symbiotic global brain will evolve with human reactions to the world as it evolves. It will be impossible for the designers of machine brains to anticipate how the world will evolve. Thus any set of values not equated with evolving human values, no matter how well intentioned, runs the risk of diverging from human values.


The symbiotic global brain is something like the democratic form of government, in which government values are equated to the values of voters. And in a sense the symbiotic global brain will be the natural evolution of democracy. Democracy will be necessary for humans to assert their control over corporations and governments in the design of machine brain values. And the symbiotic global brain will take the place of democratic government in society.

Public Policy


The utopian vision of the symbiotic global brain raises important public policy issues. The primary choice is between four basic alternatives:

1.
Do not allow creation of intelligent machines. This choice, advocated by Bill Joy [17], is based on the fear that intelligent machines will get out of control and act against human interests.

2.
Allow creation of intelligent machines, under regulations that require their reinforcement values to be for the happiness of all humans.

3.
Allow creation of intelligent machines, under some other regulations, such as Asimov’s Laws.

4.
Allow creation of intelligent machines without regulation on their design.


It is unlikely that society will outlaw intelligent machines, given the promise of universal wealth without work. The greater danger is that society will allow creation of intelligent machines without regulation. There are currently no such regulations, the public may not understand the need for regulations, and institutions creating intelligent machines will argue that they need to be unhampered by regulations in order to provide services the public wants.


The best prospect for educating the public to the need for regulation may come from military use of intelligent machines. Military organizations are putting great energy into development of “smart” weapons. These currently combine wide spread networking with specialized pattern recognition and optimization algorithms, and do not come close to true intelligence. However, the electronic arms race is on, and the development of truly intelligent weapons will only be stopped by a major public movement. The successful efforts to stop or curtail development of nuclear, biological and chemical weapons can serve as a model for such a movement. And a movement against military applications may create awareness of the more general need for regulation.


In any case, a wide spread movement will be necessary to educate the public about the issues in machine intelligence, and for the public to assert its interests in the design of intelligent machines. This will include a vigorous public debate over the four alternative policy approaches listed above.
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