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Hierarchy

Structure so that for some it is easy to oppress/force their
views for their own profit, while for most, it is the easiest
to follow

Unequality

Order: some are ”higher”then others

Unequal relations: one has power over the other (local)
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Hierachy vs self-organization

Organization = structure with function

Hierarchical organization vs self-organization

Two ways to approach it:

difference on structure
different way in achieving goal

see how the two agree
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Network

Structure → by network/graph

Graph = ’nodes’ connected by ’edges’

G (V ,E ) :

V = set of vertices/nodes
E set of edges (pair of nodes)
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Hierarchical= a lot of difference in degree?

P(k) =probability of degree k
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Random network vs scale-free network

random: P(k) normally distributed

scale free: P(k) ∼ k−λ: power-law
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Clustering coefficient

But: having lots of neighbours 6= having influence, being
leader

Looking at clustering coefficient C (v) of node v : how
good neighbours are connected
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Clustering coefficient

C (v) =
|edges between neighbours|

|total possible edges between neighbours|

=
nv

k(k−1)
2

with nv = |edges between neighbours|; k =number of
neighbours.
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high clustering coefficient: node is interchangeable with
neighbours, ”follower”

hierarchical network: higher degree, lower clustering
coefficient
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Hierarchical vs scale-free

low clustering coefficient: neighbours depend on node,
”leader”

high clustering coefficient: node is interchangeable with
neighbours, ”follower”

hierarchical network: higher degree, lower clustering
coefficient

scale-free network: clustering coefficient the same for
every degree
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Failure: nodes deleted randomly

Attack: delete most connected nodes

random: diameter increases, same for failure and attack

scale-free: diameter unchanged for failure; for attack it
increases with bigger scope then random
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Failure and attack

Diameter of network = biggest distance between two
nodes; distance= length of smallest path

Failure: nodes deleted randomly

Attack: delete most connected nodes

random: diameter increases, same for failure and attack

scale-free: diameter unchanged for failure; for attack it
increases with bigger scope then random

Civil war: attack in hierarchical network →fall apart →
new highest fight for leadership. Not because hierarchy is
necessary, but because hierachical structure is still present
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Changing network

Find easiest way from hierarchical to scale-free network

two networks with same number of nodes (and edges)

Find best mapping from nodes of one network to the other

best= least edges to add/remove
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Changing network

Find easiest way from hierarchical to scale-free network

Algoritm to equalize clustercoefficients:

Look at node v , do for all neighbours b:

C (v) < C (b): destroy edge {v , b}, unless degree(v) < k

(k some treshold): then connect neighbour of b that isn’t
connected yet to v (if possible)
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Changing network

Find easiest way from hierarchical to scale-free network

Algoritm to equalize clustercoefficients:

Look at node v , do for all neighbours b:

C (v) < C (b): destroy edge {v , b}, unless degree(v) < k

(k some treshold): then connect neighbour of b that isn’t
connected yet to v (if possible)
C (v) > C (b): create edge between v and neighbour of b
not yet connected with v

Eva Busseniers



Eva
Busseniers

Introduction

Structure

Function

Conclusion

Introduction
Structure
Function

Conclusion

Changing network

Find easiest way from hierarchical to scale-free network

Algoritm to equalize clustercoefficients:

Look at node v , do for all neighbours b:

C (v) < C (b): destroy edge {v , b}, unless degree(v) < k

(k some treshold): then connect neighbour of b that isn’t
connected yet to v (if possible)
C (v) > C (b): create edge between v and neighbour of b
not yet connected with v

algoritm still needs to be optimized and
implemented/tested
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Changing network

Build scale-free network

Start from small graph

Add nodes, with m edges (m mostly between 1 and 5)

Preferable attachment: more chance to connect with
nodes with higher degree
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with everything in cluster and leader of other clusters, rest
not connected with other clusters
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Changing network

Build hierarchical network: Leader of cluster connected
with everything in cluster and leader of other clusters, rest
not connected with other clusters

Build random network: randomly choose two nodes and
connect it, repeat for the number of edges you want
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Organization

Organization = structure with function
→ reach a global goal, global pattern

Self-organization: function, global activitity arise
spontaneously: by local interactions, common goal put by
collective

Hierarchical: structure and function (organization) decided
from above, 1 agent put the common goal
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Coordination: structuring of actions to

minimize friction
maximize synergy
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Coordination

Coordination: structuring of actions to

minimize friction
maximize synergy

→ 4 processes:

alignment
division of labor
workflow
aggregation
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Alignment= Aim at same target to avoid friction

Self-organization: agents adapt towards neighbours by
variation+selection
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Alignment

Alignment= Aim at same target to avoid friction

Self-organization: agents adapt towards neighbours by
variation+selection

Hierarchical: agents adapt towards one leader
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represented by graph

each node i get number ni between 0 and 1, represented
by color on greyscale (0=black;1=white)

color of each node moves toward neighbourcolors

ni = ni +

∑

j∈Ni
(nj − ni )

2 · |Ni |
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Model

represented by graph

each node i get number ni between 0 and 1, represented
by color on greyscale (0=black;1=white)

color of each node moves toward neighbourcolors

ni = ni +

∑

j∈Ni
(nj − ni )

2 · |Ni |

higher fitness if less variation with neighbours (less
friction)

f (ni ) =

√

|Ni |
∑

j∈Ni
(ni − nj)2
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Expectations

We expect/hope:

hierarchical network: all colors move towards
”leading”color, who gets the fittest
non-hierarchical network: all colors change the same
amount, and all nodes have same fitness

create plots with degree/clustercoeff against
fitness/difference in color between node and rest
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Degree-hierarchical network
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Degree-random network
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Colordiff independent of clustercoeff
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standard deviation fitness: 60.3; 38.1; 21.4 for resp
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scale-free and random network → more difference in color
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Some numbers

mean fitness: 131.7; 124.4; 92.0 for resp hierarchical,
scale-free and random network → much lower for random
network

standard deviation fitness: 60.3; 38.1; 21.4 for resp
hierarchical, scale-free and random network → particulary
higher for hierarchical network

mean colordiff: 0.0353; 0.0126; 0.0078 for resp hierarchical,
scale-free and random network → more difference in color
in hierarchical

standard deviation difference in color:
0.0090; 0.0048; 0.0039 for resp hierarchical, scale-free and
random network → more variation in colordiff for
hierarchical network
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Summary

Hierarchical: higher degree, lower fitness. Rest:
independent

Higher degree, lower colordifference

Higher clustercoeff, higher fitness, except random

Hierarchical: higher clustercoefficient, higher
colordifference. Rest:independent
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Division of labor + workflow : pick task most skilled at.
Example: evolution of different species

Aggregation:

shared medium. Example: ant pheromones
products of different activitities interact
example: ecosystem: other species provide resources,
services

Again by variation-selection:

division of labor: variation →some more skilled → select
task → get better at it
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Selforganization in

Division of labor + workflow : pick task most skilled at.
Example: evolution of different species

Aggregation:

shared medium. Example: ant pheromones
products of different activitities interact
example: ecosystem: other species provide resources,
services

Again by variation-selection:

division of labor: variation →some more skilled → select
task → get better at it
aggregation: random interaction, best are selected
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graph, each node (agent) has a vector of length n

is foodvector, with m ones on it, the foodproducts the
node need (rest is zero)

the products get ”garbageproducts”, by a random
permutation of the foods (so each product become
another product); same for all nodes
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Model

inspired by ecosystem, with agents who need products and
produce products others can use

graph, each node (agent) has a vector of length n

is foodvector, with m ones on it, the foodproducts the
node need (rest is zero)

the products get ”garbageproducts”, by a random
permutation of the foods (so each product become
another product); same for all nodes

with these two vectors, we can generate a garbagevector
for each node
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simple evolution: for each node we generate 10 random
fluctuations of foodvector (variation), and choose the best
(selection)

Colordiff → Difference in food of node with rest
Bad variable: you can’t influence food by food → don’t
use it

Eva Busseniers



Eva
Busseniers

Introduction

Structure

Function

Conclusion

Introduction
Structure
Function

Conclusion

Model

fitness of node = number of garbageproducts of
neighbours that are foodproducts of node

simple evolution: for each node we generate 10 random
fluctuations of foodvector (variation), and choose the best
(selection)
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Bad variable: you can’t influence food by food → don’t
use it

for each sort of network (random, scale-free, hierarchical),
we plot clustercoefficient and degree against difference in
fitness

Eva Busseniers



Eva
Busseniers

Introduction

Structure

Function

Conclusion

Introduction
Structure
Function

Conclusion

Model

fitness of node = number of garbageproducts of
neighbours that are foodproducts of node

simple evolution: for each node we generate 10 random
fluctuations of foodvector (variation), and choose the best
(selection)

Colordiff → Difference in food of node with rest
Bad variable: you can’t influence food by food → don’t
use it

for each sort of network (random, scale-free, hierarchical),
we plot clustercoefficient and degree against difference in
fitness

the bigger your fitnessdifference, the more you got stronger
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Degree-hierarchical network
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Higher degree, higher difference in fitness
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Degree-scale-free network
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Higher degree, higher difference in fitness, but less then
hierarchical
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Degree-random network
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Higher degree, a little bit higher difference in fitness
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Clustercoeff-hierarchical network
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Higher clustercoefficient, lower difference in fitness
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Clustercoeff-scale-free network
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Higher clustercoefficient, a little bit lower difference in
fitness
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fitness
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Some numbers

mean difference in fitness: 3.21; 3.17; 3.07 for resp
hierarchical, scale-free and random network → a bit lower
for random network
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Some numbers

mean difference in fitness: 3.21; 3.17; 3.07 for resp
hierarchical, scale-free and random network → a bit lower
for random network

standard deviation difference in fitness: 3.15; 2.58; 2.24 for
resp hierarchical, scale-free and random network → a bit
higher for hierarchical network
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hierarchical network, and only a little bit for random
network
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Summary

Higher degree, higher difference in fitness; more if
hierarchical network, and only a little bit for random
network

Higher clustercoefficient, lower difference in fitness; only a
little bit for scale-free and random

Eva Busseniers



Eva
Busseniers

Introduction

Structure

Function

Conclusion

Introduction
Structure
Function

Conclusion

Why not look at...

Difference in fitness (fitness in beginning different?)?
Equivalent to fitness:
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Difference in color/food between end and beginning?
Independent of degree/clustercoeff:
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Fitness

The overal fitness of the network is:
a little bit higher for hierarchical network, particulary lower
for random network.
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The overal fitness of the network is:
a little bit higher for hierarchical network, particulary lower
for random network.

The unequality of fitness of the network is:
higher for hierarchical network, a bit lower for random
network

Eva Busseniers



Eva
Busseniers

Introduction

Structure

Function

Conclusion

Introduction
Structure
Function

Conclusion

Fitness

The overal fitness of the network is:
a little bit higher for hierarchical network, particulary lower
for random network.

The unequality of fitness of the network is:
higher for hierarchical network, a bit lower for random
network

So intuition that hierachical network= more unequality,
holds.
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Influence

In the first model, the overal difference in color with the
rest of the network is:
a little bit higher for hierarchical network, particulary lower
for random network
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In the first model, the overal difference in color with the
rest of the network is:
a little bit higher for hierarchical network, particulary lower
for random network

Unequality of infuence: higher in hierarchical network
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Influence

In the first model, the overal difference in color with the
rest of the network is:
a little bit higher for hierarchical network, particulary lower
for random network

Unequality of infuence: higher in hierarchical network

So while nodes in a hierarchical network agree more with
their neighbours, they do less with the whole network
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Strange things

Higher degree/lower clustercoeff → lower fitness in
hierarchical network of 1st model: clusters evolve
independent, leading node is ’in between’ (only local
problem)
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Strange things

Higher degree/lower clustercoeff → lower fitness in
hierarchical network of 1st model: clusters evolve
independent, leading node is ’in between’ (only local
problem)

Hierarchical properties of scale-free network: the network
used isn’t completely scale-free
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Normal things

Higher degree → lower colordifference in first model:
Leaders differ less with rest
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Normal things

Higher degree → lower colordifference in first model:
Leaders differ less with rest

Higher degree/Lower clustercoeff → higher fitness in
second model: Leaders become fitter, particulary in
hierarchical network
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Further research

Work with directed graph;

Hierarchy= graph represents order
Look at what it does in the models
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Further research

On second model:

Use something else then fooddiff (garbage in it)
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Further research

On second model:

Use something else then fooddiff (garbage in it)

Complex evolution: choose partner by fitness, in the group
of neighbours with enough in common, cross-over and
mutate (based on genetic algorithm)
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Further research

On second model:

Use something else then fooddiff (garbage in it)

Complex evolution: choose partner by fitness, in the group
of neighbours with enough in common, cross-over and
mutate (based on genetic algorithm)

Avoide friction: fitness lower if garbage is used by more
nodes, higher if more neighbours with garbage
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Further research

Changing network:

Get children by GA, connected to parents and same fitness
as parent (mothermilk/feeded by parent)
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Further research

Changing network:

Get children by GA, connected to parents and same fitness
as parent (mothermilk/feeded by parent)
Connect to neighbours of neighbours, more chance if more
increase of fitness
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Further research

Changing network:

Get children by GA, connected to parents and same fitness
as parent (mothermilk/feeded by parent)
Connect to neighbours of neighbours, more chance if more
increase of fitness
Dying:

Some garbage is ”vital”, neighbour can eat you,

depending on your and his fitness

The lower fitness, the more chance to die
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The end

Thank you!
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