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@ Structure so that for some it is easy to oppress/force their
views for their own profit, while for most, it is the easiest
to follow

@ Unequality
@ Order: some are "higher” then others

@ Unequal relations: one has power over the other (local)
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Introduction

@ Organization = structure with function

@ Hierarchical organization vs self-organization
@ Two ways to approach it:

o difference on structure
o different way in achieving goal

@ see how the two agree
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nodes’ connected by 'edges

e V = set of vertices/nodes
@ E set of edges (pair of nodes)
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@ Degree of node = number of neighbours

@ Hierarchical= a lot of difference in degree?
@ P(k) =probability of degree k
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@ random: P(k) normally distributed

@ scale free: P(k) ~ k=*: power-law
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@ But: having lots of neighbours # having influence, being
leader

@ Looking at clustering coefficient C(v) of node v: how
good neighbours are connected
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ledges between neighbours|

Cv) =

Structure

|total possible edges between neighbours|
ny

K(k—1)
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with n, = |edges between neighbours|; k =number of
neighbours.

.
o<

Eva Busseniers



Structure

Hierarchical vs scale-free

Busseniers

Structure

@ low clustering coefficient:

"leader”

Eva Busseniers

neighbours depend on node,




Structure

Hierarchical vs scale-free

Busseniers

Structure

@ low clustering coefficient: neighbours depend on node,
"leader”

@ high clustering coefficient: node is interchangeable with

neighbours, " follower”

Eva Busseniers



Structure

Hierarchical vs scale-free

Busseniers

Structure

@ low clustering coefficient: neighbours depend on node,
"leader”

@ high clustering coefficient: node is interchangeable with
neighbours, " follower”

@ hierarchical network: higher degree, lower clustering
coefficient

Eva Busseniers



Structure

Hierarchical vs scale-free

Busseniers

Structure

@ low clustering coefficient: neighbours depend on node,
"leader”

@ high clustering coefficient: node is interchangeable with
neighbours, " follower”

@ hierarchical network: higher degree, lower clustering
coefficient

@ scale-free network: clustering coefficient the same for
every degree
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Failure: nodes deleted randomly
Attack: delete most connected nodes

random: diameter increases, same for failure and attack
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Diameter of network = biggest distance between two
nodes; distance= length of smallest path

Structure

Failure: nodes deleted randomly
Attack: delete most connected nodes

random: diameter increases, same for failure and attack

scale-free: diameter unchanged for failure; for attack it
increases with bigger scope then random

@ Civil war: attack in hierarchical network —fall apart —
new highest fight for leadership. Not because hierarchy is
necessary, but because hierachical structure is still present
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Find easiest way from hierarchical to scale-free network
Ctructure @ two networks with same number of nodes (and edges)

@ Find best mapping from nodes of one network to the other

@ best= least edges to add/remove

Eva Busseniers



Structure

Changing network

Busseniers

Structure Find easiest way from hierarchical to scale-free network

@ Algoritm to equalize clustercoefficients:

Eva Busseniers



Structure

Changing network

Busseniers

Structure Find easiest way from hierarchical to scale-free network

@ Algoritm to equalize clustercoefficients:
@ Look at node v, do for all neighbours b:

Eva Busseniers



Structure

Changing network

Busseniers

Structure Find easiest way from hierarchical to scale-free network

@ Algoritm to equalize clustercoefficients:
@ Look at node v, do for all neighbours b:

e C(v) < C(b): destroy edge {v, b}, unless degree(v) < k
(k some treshold): then connect neighbour of b that isn't
connected yet to v (if possible)

Eva Busseniers



Structure

Changing network

Busseniers

Structure Find easiest way from hierarchical to scale-free network

@ Algoritm to equalize clustercoefficients:
@ Look at node v, do for all neighbours b:
e C(v) < C(b): destroy edge {v, b}, unless degree(v) < k
(k some treshold): then connect neighbour of b that isn't
connected yet to v (if possible)
@ C(v) > C(b): create edge between v and neighbour of b
not yet connected with v

Eva Busseniers



Structure

Changing network

Busseniers

Structure Find easiest way from hierarchical to scale-free network

@ Algoritm to equalize clustercoefficients:
@ Look at node v, do for all neighbours b:
e C(v) < C(b): destroy edge {v, b}, unless degree(v) < k
(k some treshold): then connect neighbour of b that isn't
connected yet to v (if possible)
@ C(v) > C(b): create edge between v and neighbour of b
not yet connected with v
@ algoritm still needs to be optimized and
implemented /tested
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Structure

Build scale-free network

@ Start from small graph
@ Add nodes, with m edges (m mostly between 1 and 5)

@ Preferable attachment: more chance to connect with
nodes with higher degree
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@ Build hierarchical network: Leader of cluster connected
with everything in cluster and leader of other clusters, rest
not connected with other clusters

Structure

@ Build random network: randomly choose two nodes and
connect it, repeat for the number of edges you want
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Function

@ Organization = structure with function
— reach a global goal, global pattern

@ Self-organization: function, global activitity arise
spontaneously: by local interactions, common goal put by
collective

@ Hierarchical: structure and function (organization) decided
from above, 1 agent put the common goal
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Function @ Coordination: structuring of actions to
@ minimize friction
@ maximize synergy

@ — 4 processes:

alignment

division of labor

workflow

aggregation

¢ ¢ ¢ ¢
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@ Alignment= Aim at same target to avoid friction

Function @ Self-organization: agents adapt towards neighbours by
variation-+selection

Ny ey
b o AL

@ Hierarchical: agents adapt towards one leader
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@ represented by graph

@ each node i get number n; between 0 and 1, represented
Function by color on greyscale (0=black;1=white)

@ color of each node moves toward neighbourcolors

ZjeN,-(nj = nj)

ni = n; + 2N
1

@ higher fitness if less variation with neighbours (less

friction)
_ | Ni|
() = \/ e (i~
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@ We expect/hope:

@ hierarchical network: all colors move towards
"leading” color, who gets the fittest

@ non-hierarchical network: all colors change the same
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Function

@ We expect/hope:
@ hierarchical network: all colors move towards
"leading” color, who gets the fittest
@ non-hierarchical network: all colors change the same
amount, and all nodes have same fitness
@ create plots with degree/clustercoeff against
fitness/difference in color between node and rest
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@ Fitness independent of degree

@ higher degree, lower colordiff
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Function
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Function

fitted curve
fitted curve
fitled curve|

fitted curve

Eva Busseniers

colordiff with rest

- fited cuve
oy fited curve|
007 N
fited curve
fited curve|
0.05|
L -
0.05| N
004 A T ¢3$++
P
W
. g
o . . 5 B
4 +ET *% § £
= = =
00: —
PERE ¥ ++
001
) 02 B 05 1

Higher clustercoefficient, higher fitness and colordiff



Function

Clustercoeff-scale-free network

. tra arel Tond o
. o] oo L et
) . Tindoome] Tindoome
Function e o] Tindom
' v oo e e
3 003
g .
Somg . N
< [RSIC
H + . 1t + +
Soodt Yy 1
cio +
oot e -
FAFE N
it s
0o
= F T
b S AT T
s P R [ 1 5 S R FR—S
N A

@ Higher clustercoefficient, higher fitness

Eva Busseniers



Function

Clustercoeff-scale-free network

Busseniers

. Tted cuee] Tied curve
. fted cuve vor L+ . fted cuve
: . fited curve fited curve
Function fted curve . fited cue
. fted cuve 0055 fted cuve
g 003]
g .
ool L.,
H B Iy
2 SR + o+ +
8 o0 * T
+ + + +
P,
0.01¢ T AT -
HEW Qii -, " i +
ootk
N + T
O s 5is -
) oo 1 o o1 0z o3 o1 os
Clustercost Clustercoet

@ Higher clustercoefficient, higher fitness
@ Colordiff independent of clustercoeff

Eva Busseniers



Function

Clustercoeff-random network

q ited curve] fited cuve
Function 00 ted curve ted curve
ted curve| 003 ted curve,
tted curve ted curve
350 fitted curve, fitted curve,

0025

colordiff with rest

Clustercoeff Clustercoeff

Fitness and colordiff independent of clustercoefficient

Eva Busseniers



Function

Some numbers

Fiusssr;\ers
@ mean fitness: 131.7;124.4;92.0 for resp hierarchical,
scale-free and random network — much lower for random
Function netWOI’k

Eva Busseniers



Function

Some numbers

Busseniers

@ mean fitness: 131.7;124.4;92.0 for resp hierarchical,
scale-free and random network — much lower for random
Function netWOI’k

@ standard deviation fitness: 60.3;38.1;21.4 for resp
hierarchical, scale-free and random network — particulary
higher for hierarchical network

Eva Busseniers



Function

Some numbers

Busseniers

@ mean fitness: 131.7;124.4;92.0 for resp hierarchical,
scale-free and random network — much lower for random

Function netWOI’k

@ standard deviation fitness: 60.3;38.1;21.4 for resp
hierarchical, scale-free and random network — particulary
higher for hierarchical network

@ mean colordiff: 0.0353;0.0126;0.0078 for resp hierarchical,

scale-free and random network — more difference in color
in hierarchical

Eva Busseniers



Function

Some numbers

Busseniers

Function

mean fitness: 131.7;124.4;92.0 for resp hierarchical,
scale-free and random network — much lower for random
network

standard deviation fitness: 60.3;38.1;21.4 for resp
hierarchical, scale-free and random network — particulary
higher for hierarchical network

mean colordiff: 0.0353;0.0126; 0.0078 for resp hierarchical,
scale-free and random network — more difference in color
in hierarchical

standard deviation difference in color:

0.0090; 0.0048; 0.0039 for resp hierarchical, scale-free and
random network — more variation in colordiff for
hierarchical network
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Function

@ Hierarchical: higher degree, lower fitness. Rest:
independent

Higher degree, lower colordifference

Higher clustercoeff, higher fitness, except random

Hierarchical: higher clustercoefficient, higher
colordifference. Rest:independent

Eva Busseniers



Function

Maximize syn

Busseniers

workflow

Function

division
of labor,

—

initial task

aggregation

final product

separate activities

@ Division of labor

Eva Busseniers



Function

Maximize synergy

workflow

Function

division
of labor,

—

initial task

aggregation

final product

separate activities

@ Division of labor
@ Workflow

Eva Busseniers



Function

Maximize synergy

Function

workflow

division
of labor,

—

initial task

aggregation

final product

separate activities

Division of labor
@ Workflow
@ Aggregation
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@ Division of labor + workflow : pick task most skilled at.
Example: evolution of different species
9o Aggregation:
o shared medium. Example: ant pheromones
@ products of different activitities interact
example: ecosystem: other species provide resources,
services
@ Again by variation-selection:

@ division of labor: variation —some more skilled — select
task — get better at it
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Function

@ Division of labor + workflow : pick task most skilled at.
Example: evolution of different species
9o Aggregation:
o shared medium. Example: ant pheromones
@ products of different activitities interact
example: ecosystem: other species provide resources,
services
@ Again by variation-selection:

@ division of labor: variation —some more skilled — select
task — get better at it
@ aggregation: random interaction, best are selected

Eva Busseniers
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node need (rest is zero)
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permutation of the foods (so each product become
another product); same for all nodes
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Function

Function

inspired by ecosystem, with agents who need products and
produce products others can use

graph, each node (agent) has a vector of length n
is foodvector, with m ones on it, the foodproducts the
node need (rest is zero)

the products get " garbageproducts”, by a random
permutation of the foods (so each product become
another product); same for all nodes

with these two vectors, we can generate a garbagevector
for each node
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Function

fitness of node = number of garbageproducts of
neighbours that are foodproducts of node

simple evolution: for each node we generate 10 random
fluctuations of foodvector (variation), and choose the best
(selection)

Colordiff — Difference in food of node with rest
Bad variable: you can't influence food by food — don't
use it

for each sort of network (random, scale-free, hierarchical),
we plot clustercoefficient and degree against difference in
fitness
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fitness of node = number of garbageproducts of
neighbours that are foodproducts of node

Function

@ simple evolution: for each node we generate 10 random
fluctuations of foodvector (variation), and choose the best
(selection)

@ Colordiff — Difference in food of node with rest
Bad variable: you can't influence food by food — don't
use it

@ for each sort of network (random, scale-free, hierarchical),
we plot clustercoefficient and degree against difference in
fitness

the bigger your fitnessdifference, the more you got stronger
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@ Higher degree, higher difference in fitness, but less then
hierarchical
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@ Higher degree, a little bit higher difference in fitness
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Function

Clustercoeff-hierarchical network
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@ Higher clustercoefficient, lower difference in fitness
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Function

Clustercoeff-scale-free network
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@ Higher clustercoefficient, a little bit lower difference in
fitness

Eva Busseniers



Function

Clustercoeff-random network
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@ Higher clustercoefficient, a little bit lower difference in
fitness
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@ mean difference in fitness: 3.21;3.17; 3.07 for resp
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for random network
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Some numbers
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Function

@ mean difference in fitness: 3.21;3.17; 3.07 for resp
hierarchical, scale-free and random network — a bit lower
for random network

@ standard deviation difference in fitness: 3.15;2.58:2.24 for
resp hierarchical, scale-free and random network — a bit
higher for hierarchical network
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@ Higher degree, higher difference in fitness; more if
hierarchical network, and only a little bit for random
network
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Function

Summary
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Function

@ Higher degree, higher difference in fitness; more if
hierarchical network, and only a little bit for random
network

@ Higher clustercoefficient, lower difference in fitness; only a
little bit for scale-free and random
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Why not look at...
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o Difference in fitness (fitness in beginning different?)?
Equivalent to fitness:

Function
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Function

Why not look at...

Busseniers

o Difference in fitness (fitness in beginning different?)?
Equivalent to fitness:

Function

@ Difference in color/food between end and beginning?
Independent of degree/clustercoeff:
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Conclusion
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@ The overal fitness of the network is:
Conclusion a little bit higher for hierarchical network, particulary lower
for random network.

@ The unequality of fitness of the network is:
higher for hierarchical network, a bit lower for random
network

@ So intuition that hierachical network= more unequality,
holds.
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Conclusion

Influence

Busseniers

@ In the first model, the overal difference in color with the
rest of the network is:
a little bit higher for hierarchical network, particulary lower
for random network

Conclusion

@ Unequality of infuence: higher in hierarchical network

@ So while nodes in a hierarchical network agree more with
their neighbours, they do less with the whole network
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@ Higher degree/lower clustercoeff — lower fitness in
hierarchical network of 1st model: clusters evolve
independent, leading node is 'in between’ (only local
problem)
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Conclusion

Strange things

Busseniers

vl @ Higher degree/lower clustercoeff — lower fitness in
hierarchical network of 1st model: clusters evolve
independent, leading node is 'in between’ (only local
problem)

@ Hierarchical properties of scale-free network: the network
used isn't completely scale-free
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Conclusion

@ Higher degree — lower colordifference in first model:
Leaders differ less with rest
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Conclusion

Normal things

Busseniers

Conclusion

@ Higher degree — lower colordifference in first model:
Leaders differ less with rest

o Higher degree/Lower clustercoeff — higher fitness in

second model: Leaders become fitter, particulary in
hierarchical network
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Conclusion

@ Work with directed graph;

@ Hierarchy= graph represents order
@ Look at what it does in the models
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@ Complex evolution: choose partner by fitness, in the group
of neighbours with enough in common, cross-over and
mutate (based on genetic algorithm)
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On second model:
Conclusion @ Use something else then fooddiff (garbage in it)

@ Complex evolution: choose partner by fitness, in the group
of neighbours with enough in common, cross-over and
mutate (based on genetic algorithm)

@ Avoide friction: fitness lower if garbage is used by more
nodes, higher if more neighbours with garbage
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Conclusion

Further research

@ Changing network:
Conclusion o Get children by GA, connected to parents and same fitness
as parent (mothermilk /feeded by parent)
@ Connect to neighbours of neighbours, more chance if more
increase of fitness
@ Dying:
@ Some garbage is "vital”, neighbour can eat you,

depending on your and his fitness
@ The lower fitness, the more chance to die
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Conclusion

Thank you!
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