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The goal of this paper is to present a centrality measurement for the nodes
of a hypergraph, by using existing literature which extends eigenvector cen-
trality from a graph to a hypergraph, and literature which give a general
centrality measurement for a graph. We’ll use this measurement to say more
about the number of communications in a hypergraph, to implement a learn-
ing mechanism, and to construct certain networks.

1 Introduction

Network theory is a well established discipline. Usually the presumptions are
that there is a one-to-one connection between nodes, by edges. But this is
sometimes too simple for reality. We meet up with other people in groups,
which has other dynamics then each of its members meeting everyone else
separately. On the internet, we post messages on forums, which lead to other
results then emailing someone.
A hypergraph formalizes this idea. It is a generalization of a graph where
an edge can connect more then two edges. A hyperedge leads to different
behavior then a clique (where all the nodes of the hyperedge would be con-
nected one on one to each other). For example, a message can only be send
to all or none of the members of a hyperedge, depending on whether it is
passed trough the hyperedge or not.

The reason I am interested in a centrality measurement is to know which
nodes play an important role. I want to see whether there is hierarchy in the
network, whether there are nodes who have more to say or more control.
I liked the paper of Bonacich about general centrality [1] because it gives
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one parameter which corresponds to different sorts of centrality. Usually, a
centrality measurement looks either to the local structure ( by the degree)
or to the global, the whole network (by the eigenvector centrality). The pa-
rameter in the general centrality measurement says how local or global you
look. In the eigenvector centrality, the more central your neighbors are, the
more central you will be. In some real life situations however, we see the
opposite. In a market for example, the more central your neighbors are, the
more resources they will already have, and thus the more difficult it will be
for you to trade with them. Thus you will be less central. This is also taken
into account in the general centrality measurement, it corresponds to the
case when the parameter is negative.
This general centrality measurement also has a nice intuitive explanation.
The centrality of a node can be seen as the number of communications start-
ing from that node. The parameter is then equal to the chance a message is
passed. Thus the bigger the parameter, the further in the network you will
look.

I will now define a hypergraph, to be able to define all these concepts.

Hypergraph
The idea of a hypergraph is to extend a graph so that edges can connect

more than two nodes. It is defined as follows:

1.1 Definition. An (undirected) hypergraph is a couple of two sets (V,E),
with an element Ej ∈ E a subset of V . An element vi ∈ V is called node,
an element Ej ∈ E is called (hyper)edge.

We can represent this by a |V |× |E|-matrix R, where Rij = 1 if vi ∈ Ej,
and 0 otherwise. All edges have the same strength this way, if we want
the edges to have weights, we’ll work with a matrix of weights W , with
Wij ∈ [0, 1] the weight of vertex vi in edge Ej. In an undirected hypergraph,
this is the same as the weight from Ej to vi. This won’t be the case in a
directed hypergraph, which is defined as follows:

1.2 Definition. A directed hypergraph is a couple of two sets (V,E), with
an element Ej ∈ E a couple (Ij, Oj) of two subsets of V . Ij is called the set
of input nodes and Oj is called the set of output nodes.
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A weighted directed hypergraph can be represented by two matrices: a
|V |×|E|-matrixW , giving the weights from vertices to edges, and a |V |×|E|-
matrix Z, which represents the weights from edges to nodes. In the following
we will work with an undirected hypergraph, note that this can easily be
extented to a directed hypergraph by using Z instead of W T .
A hypergraph can be pulled back to a standard graph. One way is to repre-
sent the hypergraph by a bipartite graph with 2 kind of nodes: one sort is
the nodes of the hypergraph, the other sort consists of the hyperedges of the
hypergraph. Two nodes of different sorts are connected if the node is in the
hyperedge in the hypergraph structure.
Another way to build a standard graph out of a hypergraph is to put an edge
between all nodes which are in the same hyperedge. Consider two nodes
vi and vk which are in the same hyperedge Ej. The contribution of Ej to
the weight aik between vi and vk is wijwkj. The total weight is obtained by
summing over all the hyperedges which contain both vi and vk, thus:

aik =
|E|
∑

j=1

wijwkj

or in matrix notation:
A = WW T

For a directed hypergraph, we use Z instead of W T , thus

A = WZ

Note that there is some information lost: it is impossible to know in this
representation which nodes are in the same hyperedge.

A hypergraph can have different topologies. To differentiate between
them, we can extrapolate from the work already done in standard graphs. A
common way to differentiate between different topologies, is to take different
distributions of a property of the nodes. We’ll look at two properties: the
degree and the centrality. First, we’ll look at the eigenvector centrality, next,
we’ll introduce a more general measurement c(α, β), which depends on some
parameters. Then we’ll explain the link between the general centrality and
the number of communications send by a node.
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2 Degree

What is mostly done first, is to look at the degree. A hypergraph has two
sorts of degree: the degree of a node, which is the number of hyperedges it
is contained in, and the degree of a hyperedge, which is the number of nodes
it contains.

3 Centrality

3.1 Eigenvector centrality

What we will represent here, basicly comes from a paper of Volpentesta [3].
The idea behind the eigenvector centrality is that a node is more central as
his neighboring nodes are more central. In a standard graph, the eigenvector
centrality ei of a node i is:

λei =
∑

j

Wijej

with W the matrix of the weights of the edge between two nodes (0 if
there is no edge). λ is just a factor so that the equations have a solution. In
matrix notation this looks as follows:

λe = We

This is an eigenvector equation: the solutions e are the eigenvectors of
W , with λ its eigenvalue. Due to the theorem of Perron-Frobenius, the eigen-
vector associated with the largest eigenvalue has only positive entries.

To extend this to a hypergraph, we will assign a centrality both on the
nodes and the edges. A node is more central as the edges it is contained in
are more central, and analog for the edges. Thus, the centrality xi of node i
is:

c1xi =
∑

j

Wijyj

while the centrality yj of an edge j is:

c2yj =
∑

i

Wijxi.
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Or, in matrix notation:

c1x = Wy

c2y = W Tx

or, written in equations with only x or y:

WW Tx = λx

W TWy = λy

with λ = c1c2

3.2 General centrality

In a graph, a general centrality measurement for a node i is defined as follows
[1]:

ci(α, β) = α
∑

j

Wij

︸ ︷︷ ︸

degree

+β
∑

j

cjWij

︸ ︷︷ ︸

eig. centr.

or in matrix notation:

c(α, β) = αW1+ βWc(α, β)

⇒ (I − βW )c(α, β) = αW1

⇒ c(α, β) = α(I − βW )−1W1 (1)

The above formula is only defined if the inverse (I − βW )−1 is defined,
thus if det(I − βW ) %= 0. We have, if β %= 0:

det(I − βW ) = det(β(
1

β
I −W ))

= det(−β(W −
1

β
I))

= (−β)ndet(W −
1

β
I)

Since the eigenvalues ofW are the solutions of the equation det(W−λI) =
0,

(−β)ndet(W −
1

β
I) = 0
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if 1

β
is an eigenvalue. This is equal to β = 1

λ
, with λ an eigenvalue. If β = 0,

we simpy have I−1 = I, thus the inverse is defined. This case means the
centrality of a node is just α times his degree. We will use this result further
on, so we put it in a property:

3.1 Property. (I − βW )−1 is defined, if and only if β %= 1

λ
, with λ an

eigenvalue.

If β = 1

λ
, we got the eigenvector centrality if α = 0.

The idea behind the formula is that the centrality partially depends on the
local situation, measured by the degree, and partially on the global situation,
measured by the eigenvector centrality. The bigger the absolute value of β,
the more globally the centrality is. The sign of β tells whether the neighbours
of a node has a positive or a negative effect on that node: if β is positive,
the more central your neighbours are, the more central you will be, while if
β is negative, the more central your neighbours are, the less central you will
be. An example of the second case is a market, where you’re punished if you
have a central neighbour, who is more difficult to trade with. As can be seen
in the above formula, α is just a scaling factor for the centrality, thus it has
no effect on the distribution. Usually α is chosen such that

∑

i

ci(α, β)
2 = |V |

Thus, ci(α, β) = 1 means position i has an average centrality.

The extension to a hypergraph is similar to the previous subsection: the
centrality of a node i is defined as:

xi = α1

∑

j

Wij + β1

∑

j

Wijyj

And for an edge j:

yj = α2

∑

i

Wij + β2

∑

i

Wijxi

In matrix notation:

x = α1W1+ β1Wy (2)

y = α2W
T1+ β2W

Tx
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Or notated with x and y in seperate equations:

x = (I − β1β2WW T )−1W (α11+ β1α2W
T1) (3)

y = (I − β1β2W
TW )−1W T (α21+ β2α1W1)

If β1β2 %=
1

λ
, with λ an eigenvalue ofWW T orW TW , the inverse is defined

(3.1).
If α1 = α2, this is again a scaling factor. Since there is no straightforward

explanation for the α’s which characterize different kinds of centrality, we
will often work with this assumption. There is no possibility to make the
average centrality of both nodes and edges equal to 1 with one scaling factor.
We’ll often take α1 = α2 = 1 for simplicity.

3.3 Communication in graph

A theorem we will use in the following two chapters is:

3.2 Theorem. (I − cA)−1 =
∑+∞

k=0
(cA)k, with A a symmetric matrix with

positive real entries, and c a constant fullfilling |c| < 1

λmax
, with λmax the

biggest eigenvalue of A.

Proof. First note that it follows from 3.1 that this inverse is defined, since

c <
1

λmax

≤
1

λ

Thus c %= 1

λ
.

Define

Sn =
n

∑

k=0

(cA)k.

Then

cASn =
n

∑

k=0

(cA)k+1 =
n+1
∑

k=1

(cA)k

and

Sn − cASn = I − (cA)n+1

⇒ (I − cA)Sn = I − (cA)n+1

⇒ Sn = (I − cA)−1(I − (cA)n+1).
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Thus we got:

+∞
∑

k=0

(cA)k = lim
n→+∞

Sn

= lim
n→+∞

(I − cA)−1(I − (cA)n+1)

= (I − cA)−1 lim
n→+∞

(I − (cA)n+1)

= (I − cA)−1(I − lim
n→+∞

(cA)n+1)

Thus, if we can prove that

lim
n→+∞

(cA)n+1 = lim
n→+∞

(cA)n = 0 ,

with 0 the zero matrix, we are there. Since A is a symmetric matrix with
real entries, there exists an orthogonal matrix U such that A = UDUT , with
D a diagonal matrix with the eigenvalues in the diagonal. Thus

An = (UDUT )n = UDUTUDUT ...UDUT = UDnUT ,

where the fact that U is an orthogonal matrix, meaning UTU = I, is used.
So we got:

lim
n→+∞

(cA)n = lim
n→+∞

cnUDnUT .

We have:

cnU






λn
1

. . .
λn
n




UT ≤ cnU






λn
max

. . .
λn
max




UT

= cnλn
maxUIUT

= cnλn
maxI.

Thus, if
lim

n→+∞
cnλn

max = 0,

we are there. This is the case if

−1 < cλmax < 1,

thus

|c| <
1

λmax

,

which is one of the conditions and thus proves our theorem.
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It follows from this theorem that there is another way to write the cen-
trality in a graph, if |β| < 1

λmax
, which we will assume from now on. Starting

from (1), we got:

c(α, β) = α(I − βW )−1W1

= α(
+∞
∑

k=0

(βW )k)W1

= α
+∞
∑

k=0

βkW k+11

β can be seen as the chance a message is passed by a node, thus 0 ≤ β ≤ 1.
In this interpretation, c(1, β) can be seen as the number of communications
starting from each node: we got

c(1, β) =
+∞
∑

k=0

βkW k+11

W1 = degree of each node = number of communications of length 1; βW 21=
number of communications of length 2; and so on. Thus the sum is the
total number of communications starting from each node. In the challenge
propagation model[2], β is the chance a challenge get selected by an agent.

The absolute value of β determines the neighbourhood taken into account
to calculate the centrality,(1−β)−1 is the radius of this neighbourhood. After
all, the expected length of a communication is

1 + β + β2 + ... =
+∞
∑

k=0

βk =
1

1− β

The last equation holds since β < 1 (the equation is a simpler case of 3.2).

3.4 Communication in hypergraph

Using theorem 3.2, we can write the centrality of the nodes in a hypergraph
in a similar way as done above for a graph. This is possible if |β1β2| <

1

λmax
,

which we will assume from now on. Starting from (3), we got:
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x = (I − β1β2WW T )−1W (α11+ β1α2W
T1)

= (
+∞
∑

k=0

(β1β2WW T )k)W (α11+ β1α2W
T1)

= α1

+∞
∑

k=0

(β1β2WW T )kW1+ α2β1

+∞
∑

k=0

(β1β2)
k(WW T )k+11

We know (Section 1 Introduction) that a hypergraph can be represented
by a graph with matrix WW T . If we take α1 = 0;α2 = 1 and β1 = 1 in the
above equation, we got the following result:

x =
+∞
∑

k=0

(β2)
k(WW T )k+11

which is the same as the centrality of the nodes of the corresponding graph
of the hypergraph, thus β2 is the chance a challenge get selected by a node.

In general, if we take α1 = α2 = 1, then β1 can be interpreted as the
chance an edge selects a challenge (which is in general 1), and β2 as the
chance a node selects a challenge. Then the centrality of a node is the number
of communications to a hyperedge or a node, starting from that node.

x =
+∞
∑

k=0

(β1β2WW T )kW1

︸ ︷︷ ︸

communications to edges

+ β1

+∞
∑

k=0

(β1β2)
k(WW T )k+11

︸ ︷︷ ︸

communications to nodes

To explain why this is the number of communications, we follow a communi-
cation getting spread further and further, by looking at each term from the
above equation, jumping from the first sum to the second and back. This
gives us following tabular:

k = 0 in 1st sum W1 communications to neighbour edge
k = 0 in 2ndsum β1WW T1 communications to neighbour nodes
k = 1 in 1st sum β1β2WW TW1 communications to edges at distance 2

...
...

...
A generalization of this principle could be to let the selection of a challenge

depend on the challenge (or some property/category of it) and on the agent.
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Thus, instead of β21, we will work with β̄2(c), a vector of functions working
in on an element of the challenge space. It could be the same function for all
agents, the same result for all challenges, or depending on the category the
challenge belongs to.

4 Topology

Now, we can define different topologies. This is in general done by looking
at different distributions of some node property. We will look at the degree
frequency and the centrality in function of the degree. We will look at net-
works where this function is a power-law, normal distribution or a constant
function.

5 Learning

There are two ways in which the network can learn: it can adapt the weights
of the already existing links, or it could create new links. Weights can be
adapted by delta learning: if a challenge coming from a certain hyperedge
j is selected by a node i, the weight gets adapted depending how good the
challenge is relaxed:

Wij ← Wij + r(||c||− ||fa(c)||),

with fa the processing function, and r some constant. There could also be
some punishment p if a challenge doesn’t get selected:

Wij ← Wij − p

To create new links, you can add or delete nodes to existing hyperedges
by variation and selection. The fitness and mutation rate of an hyperedge
Ej could be:

fitness(Ej) =

∑

||c||− ||fa(c)||

|Ej|

mutate(Ej) ∼
1

fitness(Ej)

Then nodes can be added depending on how much they add: β1β2WW TW
is the chance there is communication from canditate node to edge in 1 step.
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It’s also possible to look further. The chance for a communication from a
node to an edge is given by the matrix

∑+∞
k=0

(β1β2WW T )kW , which is equal
to (I − β1β2WW T )−1W , part of (3). An elaboration could be to extract it
with W , so that nodes already in the hyperedge aren’t considered.

To construct new hyperedges, we can treat a node as a hyperedge with
only one node in, and use the same method as above to add nodes to it.
If we only look to the closest nodes not yet linked with the node, it is
given by the matrix β2

1β2(WW T )2. If we consider all node-node communica-
tions, it is given by the matrix β1

∑+∞
k=0

(β1β2)k(WW T )k+1, which is equal to
β1(I − β1β2WW T )−1WW T , part of (3). An elaboration could be to extract
it with β1WW T , so that nodes already connected to the other node aren’t
considered.

Another possibility is to add an hyperedge for agents working on the
same challenge, or having some kind of common goal (where the output of
one agent is useful for another agent), within a certain neighbourhood.

Right now the weight is the same for all challenges, you could let it
depend on the challenge by making it a function Wij(c). Another possibility
is to have different weights per component, thus a challenge could be send
partially.

6 Constructing a network

I now want to create methods to construct a network. The basic mechanism
will be to extend the BA-algorithm of preferential attachment. A first exten-
sion will be to use different preferences, namely the centrality, local centrality
or cluster-coefficient (for a graph) instead of the degree. I also want to use
the algorithm in a hypergraph. I’m not only interesting in building a net-
work by adding nodes, I also want to strengthen existing networks by adding
edges. Here, the node we start with isn’t a new node, but an existing node
chosen ad random or preferential by degree.
Thus, we can write this in one algorithm, with two parameters to represent
this different choices. The first parameter, startingnode, determines whether
the first node is a new node, a node chosen ad random, or a node chosen
by preference of degree. The second parameter states which variable decides
the preference. Thus whether it is a higher degree, centrality or local cen-
trality which gets more often chosen as a node or edge to connect to from
the starting node. The local centrality is with respect to the starting node,
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it is thus the chance of communication from this node to another node. The
higher this chance, the more chance to connect to the other node. This only
makes sense when the starting node is an already existing node, since a new
node can’t reach any other node.

When I applied this algorithm, I noticed a problem. I often received
warnings that my matrix was close to singularity. When I looked to my
eigenvalues, I saw that the biggest eigenvalue was for some reason often
around 11. Thus β should be smaller then 1/11 = 0.0909, which is a serious
restriction I didn’t want to follow. I saw that indeed there was an eigenvalue
which was pretty close to 1/β, the cause of the warning.
The solution I implemented for this problem is to give all edges a weight of
0.1, by which the largest eigenvalue drops to 1.1, and β can go until 0.9. This
will always be done further on.
But this might be a fake solution, because lowering the weights makes it
harder to traverse the network. Thus we still look pretty locally. In this case
the centrality is quite similar to the degree, and it isn’t that useful. We’ll
check whether this is indeed the case in our simulations.

When we construct a network by adding nodes, we will always start from
a network of 3 nodes which are all connected. In general, the weights will be
0.1, and β will be 0.5.

6.1 Results

I first checked whether my algorithm went fine, by checking whether the
plots behaved as they should when I constructed a network of 103 nodes by
preferential attachment by degree. This was the case - the degree followed a
power-law.
Then I constructed a network by preferential attachment of centrality, and
checked how it behaved differently from a network created by preferential at-
tachment by degree. I did 1000 iterations for both networks, thus they were
1003 nodes. The behavior was actually quite similar, the main difference was
that the maximal degree and centrality was higher in the network created by
preferential attachment of degree. In both networks, the centrality is linear
against the degree. This confirms that lowering the weights might be a fake
solution, because we are still looking pretty locally.
To understand this better, we look how the centrality behaves against the
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degree, as β increases. We do this in a network with weights 1 constructed by
prefential attachment of the degree, because β isn’t needed in this construc-
tion. We iterated β from 0 to 1, with a step of 0.1. For β = 0, we see that
indeed the centrality is linear against the degree (as expected). For β = 0.1,
it starts to look more as a power-law. For higher values of β, the centrality
is symmetrical around zero ( there are both positive and negative values).
Non-zero values of centrality tend to be with nodes with a small degree. For
smaller β’s, you see a star-behavior: points tend to be on three lines, one
increasing, one stable, one decreasing. There are thus still quite some nodes
with a normal degree and non-zero centrality. But for higher and higher β’s,
the points are squashed against the wall, until only the lowest degrees have
a non-zero centrality (for β = 1).
To try to look more globally in the network, I redid the previous construc-
tion of a network (with weights 0.1) by preferential attachment of centrality,
but with β = 1. The centrality increased exponentially in comparison to the
degree (not linear anymore), but for the rest the behavior was quite similar
to the previous run.
I redid the same with β = 8.5433 (I took a strange number to avoid it being
equal to a 1/λ). This did give interesting results. The power-law of the de-
gree was much less steep then before (thus it was more equally distributed).
The centrality wasn’t much affected by the degree, except that lower degrees
tended to have a bigger absolute centrality. There were also negative cen-
tralities, thus the histogram looked like a mirrored power-law or a normal
distribution (can’t really tell the difference). The power-law of the cluster-
coefficient against the degree was much more steep. Actually, only the nodes
from the beginning had a positive cluster-coefficient, of which two had a
cluster-coefficient of 1, while their degree was 2, thus they didn’t connect to
anyone new during the whole run. The other node had a cluster-coefficient
of 0, 05 and a degree of 430 (pretty average). Note that in the other runs
there were also only a couple of nodes with a positive cluster-coefficient, but
their degree was higher.

When using the cluster-coefficient as the preference, we saw that there
emerged three clusters around the nodes of the starting network. Only these
nodes had a positive cluster-coefficient, and thus they where the only nodes
new nodes attached to.

For a hypergraph, the results are similar.
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7 Conclusion

I defined a general centrality measurement in a hypergraph. This corresponds
in certain cases to the number of communications in a hypergraph. But
during testing, I saw that the restriction that β should be smaller than 1/λ
is a serious one. The chance of communication is thus pretty low, which
mean we look pretty locally. Note that we can still look at the number of
communications for bigger β’s, but we can only write this as an infinite sum.
There is a possibility that this number will become infinite, as the number
of possible paths exceeds the chance they occur. Note also that we can still
look at the centrality for β’s bigger than 1/λ, but that there is simply no
more simple explanation as the number of communications anymore. In this
case there are also negative centralities possible.
I will now try to understand this case as best as possible. To do this, I will
basicly use the formula

ci = di + β
∑

j∈N−

i

cj + β
∑

j∈N+
i

cj,

with di being the degree of i, N+
i the neighbors of i with positive centralities,

and N−
i the neighbors with a negative centrality. For positive β’s, a node

with a negative centrality means it has quite some neighbors who have a
negative centrality. For negative β’s, the explanation is a bit more intuitive:
a negative centrality of a node means the positive centralities of its neighbors
overrule the negative ones. You could see it as nodes getting their positive
centrality by ’stealing’ it from their neighbors, whose centrality thus gets
more negative. For β positive, neighbors reinforce each other, but having
’bad’ friends also increases your chance to be ’bad’. You could see the nodes
as belonging to two ’groups’: the ’positives’ and the ’negatives’. Nodes
belonging to different groups balance each other out, while nodes belonging
to the same group reinforce each other. Note that calculating the centrality
of a node with β positive, is the same as changing the sign of the centrality
of all its neighbors, and using the same β but negative. Here, we can use
the explanation for negative β’s. Thus for positive β’s, the negative nodes
’steal’ centrality from you, while the positive ones give some centrality to
you. Note that a positive β isn’t just the reversed state of its negative β,
since we arbitrary fixed the centralitities of the neighbors, and the centrality
of the given node doesn’t flip, it remains the same.
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