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Introduction 

What is cognition? 

Cognitive Science is the modern science of the mind. Cognition drives from the Latin verb 
cognoscere, which means “get to know”. This means that cognition focuses on knowledge, albeit 
not as a static substance or “thing”, but as a process. More generally, when we speak about 
cognition we are focusing on the mind as an information processor, i.e. a system that acquires, 
uses and transforms information. As such, a theory of cognition typically studies issues such as the 
following: 

Knowledge 

- What is knowledge? 

- How is knowledge organized or structured? 

- What are true (good) and false (bad) knowledge? 

Perception and learning 

- How do we acquire new knowledge? 

- How do we interpret incoming information? 

- What are perception, learning, and discovery? 

- What is the difference between knowledge and memory? 

Intelligence 

- How do we use knowledge? 

- How do we solve problems, make decisions, and plan actions? 

 

It is important to note that cognition is not just about the kind of explicit knowledge and rational 
thinking that we typically find in scientific or philosophical reasoning. Cognition also includes 
subconscious, implicit, and affective experiences and feelings, since these too are based on the 
processing of information. For example, emotion, consciousness, and intention are all cognitive 
phenomena.  
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More generally, we can say that cognition investigates the functioning of the brain at the higher 
level. It is not so much interested in the details of neurophysiology or brain anatomy, although it 
may draw inspiration from them if they illuminate higher order mechanisms.  

Cognitive Science (CS) as a scientific domain emerged in the 1970's, inspired by computer 
simulations of cognitive processes. It is a very multidisciplinary field, which includes at least the 
following domains: 

- (cognitive) psychology 

- artificial intelligence (computer simulation of cognition) 

- epistemology, logic, and philosophy of science 

- linguistics 

- neuroscience 

- cultural anthropology or ethnography (study of beliefs and behaviors in different groups) 

- ethology (study of animal behavior) 

However, the CS program soon encountered a number of conceptual and practical problems. The 
implementation of cognitive science theories in artificial intelligence programs was not as 
successful as expected. This was mainly due to a too reductionist or mechanistic view of the mind. 
Traditional CS sees the mind as a kind of computer program, composed of information processing 
modules that manipulate symbols on the basis of explicit inference rules. This mechanistic 
philosophy is sometimes critically referred to as “cognitivism”. These difficulties led to a 
countermovement in the 1980's and 1990's, which emphasized the holistic, interactive and self-
organizing character of cognition. This included alternative approaches such as connectionism, 
constructivism, situated and embodied cognition, distributed cognition, dynamical systems, and 
studies of consciousness. 

As yet, there is no integrated theory of cognition. The present approach seeks to find such 
integration by applying the conceptual framework of general systems theory and cybernetics. 
Therefore, I have called this approach “Cognitive Systems”, thus emphasizing the systems 
philosophy that is its foundations. The simplest way to show the need for such a holistic approach 
is by considering the fundamental problems caused by the traditional, analytic or reductionist 
view. 

The naive view of cognition 

The best way to explain the difficulties that cognitive science faces is by starting with the simple, 
intuitive view of the mind that is implicitly held by most people, including many scientists and 
philosophers. This perspective has fundamental conceptual problems and must therefore be 
replaced by something radically different. However, it is very difficult to completely get rid of it 
because it is so intuitive. To detach ourselves from these intuitive preconceptions, it is worth 
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investigating them in detail, pointing out their hidden biases, and making explicit the problems that 
these entail.  

Dualism 

Descartes was the first philosopher to address the problem of mind from within the new 
mechanistic worldview, which would later be developed by Newton as the foundation of classical 
mechanics. According to mechanics all the phenomena around us can be reduced to the movement 
of material objects, such as particles, as determined by the laws of nature. This mechanistic view 
poses an intrinsic problem since it does not seem to leave any space for mental phenomena. 
Descartes solved this problem by proposing two independent realms: mind and matter. While 
matter follows the laws of mechanics, mind has a logic of its own that cannot be reduced to 
mechanical principles. This philosophy is known as dualism. It is essentially outdated, although a 
few philosophers and even brain scientists still hold on to it.  

The assumptions of dualism are simple. Outside, we are surrounded by material reality. This 
consists of hard, indivisible particles or pieces of matter, which obey the deterministic, mechanical 
laws of nature. Such determinism leaves no place for free will, intention or agency: since all 
material events are already fully determined by the laws of nature, there is no freedom to intervene 
or change the course of events. The atomic structure of matter leaves no place for thoughts, 
feelings, consciousness, purpose, or other mental phenomena. Therefore, we need to assume that 
there exists another reality inside: the mind, which reflects about external reality as perceived 
through the senses. Descartes conceived this mind as an immaterial soul, having a free will. To 
explain how this mind could still affect the body, which obviously is made out of matter, he 
assumed that the mind communicates with the body through the pineal gland, a small organ in the 
brain stem. 

While simple and intuitive, dualism creates a number of fundamental problems. First, adding the 
independent category of mind to the one of matter obviously makes things more complicated. 
More fundamentally, as pointed out by the 20th century philosopher Gilbert Ryle, Descartes’ mind 
functions like a “ghost in the machine”—similar to the Deus ex Machina that suddenly drops from 
the sky to solve all problems when the plot in a novel or play has become too complicated. The 
body behaves like a mechanical, deterministic machine. Yet, it is inhabited by some spooky 
“ghost” that pulls the strings, and that performs all the tricks that are too complicated for us to 
understand mechanically. Indeed, we have no scientific theory of mind as a separate category, 
unlike our very reliable and precise theories of matter. Finally, if mind can affect matter beyond 
what matter would already do on its own, then it must contravene the deterministic laws of 
mechanics, implying that these otherwise very reliable laws cannot be trusted.  

In spite of these shortcomings, Descartes’ dualist philosophy remains simple and intuitively 
attractive. It is still (implicitly) used nowadays by scientists and lay-people, albeit most often in a 
“materialist” version, which we will now investigate in more detail. 



- 7 - 

The reflection-correspondence theory of knowledge 

The naïve mechanistic or materialist view of the mind is based on the idea that knowledge is 
merely a mirror image or reflection of outside reality. The assumption is that for every object or 
phenomenon in reality there is a corresponding concept or idea inside the mind. For example, a 
dog (external) is represented by the concept “dog” inside the mind. Concepts are typically 
represented by words, but could also be visualized as images, or represented using some more 
abstract “language of thought”. The relations between objects are similarly represented by 
relations between concepts. E.g. when the dog stands on a carpet, the relation is represented by the 
relational concept “on” (see Figure). The whole of such concepts and their relationships produces a 
map, model, or image of reality.  

 

 

 

 

  

 

 

 

 

 

 

This simple philosophy of knowledge produces a very straightforward notion of truth: true 
knowledge means that the network of relationships in the mind accurately corresponds to the 
actual relationships between objects in outside reality. Mathematically, we can say that there is an 
isomorphism (structure preserving mapping) between outside objects and inside concepts. This 
correspondence can be checked by direct observation: is there really a dog standing on the carpet? 
This view is sometimes called naive realism. It assumes that our mental contents are simply 
representations or reflections of the reality outside the mind, and that perception is nothing more 
than a process mapping external onto internal components.  

This is comparable to the process of a camera taking a snapshot of a scene. The resulting photo can 
then be seen as a map of the environment—the way satellite photos are often used as maps—since 
it is isomorphic to that environment. (If a simple camera-like recording is not sufficient, perception 
may be helped by tools, such as microscopes, X-ray machines, or radioactivity detectors.) Memory 

  on 

dog 

mat 
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then is nothing more than the set of photographs and sound recordings made via perception that are 
stored in some kind of warehouse inside the brain. 

In this reflection-correspondence view of cognition, thinking or reasoning is simply an exploration 
of the inside map in order to deduce features of the outside world. For example, by investigating 
the map in front of me—assuming it is accurate—I can infer that if I turn left on the next crossing, 
and then take the third side street on the right, I will arrive in front of the church.  

Problems 

Although simple and attractive, this philosophy leads to a range of fundamental problems. First, 
reality is much too complex to map in detail: we can only register and remember the tiniest 
fraction of the potentially available information. Moreover, why would we need such an accurate 
reflection if we have the world itself? Too detailed maps are essentially useless: just imagine a 1/1 
scale map of a city, where every stone, weed or broken bottle is reproduced in full detail. On the 
other hand, a classic example of a simple and useful map is the London underground (subway) 
map, which reduces a tangle of thousands of streets, railways, and crossings to a small number of 
distinctively colored, straightened lines, representing the underground lines with their stations. 
Simplifying a map may seem obvious, but the problem is that there is no objective way to decide 
what to leave out and what to include in the map. All maps, models and representations are 
strongly determined by the purpose for which they are used. For example, a bus map will look 
completely different from an underground map, even though they cover the same terrain. Both in 
turn will look complete different from a geological map indicating water basins and elevation.  

More fundamentally, as Kant taught us, we have no access to the “Ding-an-sich”, i.e. the objective 
reality outside of us, only to our very simplified and distorted perceptions of it. We cannot 
compare our mental contents to reality, only to our perceptions—which are themselves already 
part of our mental contents. Therefore, there is no absolute way that we can make sure that the 
reflection is accurate. This forces us to abandon accurate reflection as the ultimate criterion of 
truth.  

Yet another problem with the reflection view of mind is that it does not explain abstract or 
affective ideas. For example, how can you perceive compassion, the number zero, causality, or 
democracy? Which concrete objects are mapped onto these abstract concepts? Even for the 
phenomenon that initially inspired this philosophy, imagery, it turns that out that there is no true 
isomorphism between the mental image and the thing it represents. For example, try to imagine a 
picture of the Parthenon before your mind’s eye: can you count the number of columns in the 
front? If you cannot, it means that there is no exact correspondence between object and mental 
representation.  

Most fundamentally, the reflection view does not explain the active role of the mind. Indeed, it 
does not tell us what happens to these internal maps: who or what is using them for what reason 
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and in what way? Trying to answer that 
question merely leads us into another 
conundrum, that of the homunculus. 

The Homunculus problem 

Cartesian materialism is an attempt to keep 
the mechanistic metaphysics of Descartes 
while getting rid of the idea on an immaterial 
soul. In this philosophy, the mind is seen as a 
(material) component of the body (e.g. the 
brain or some component of it) that interacts 
with the world via the senses and muscles. 
The philosopher Daniel Dennett has proposed 
the term “Cartesian theater” to summarize the 
picture that results when this idea is combined 
with the reflection-correspondence perspec-
tive: the mind somehow sits in a theater where the incoming perceptions are projected as images 
onto a screen; it looks at them, interprets them, and decides what to do; it sends its decisions as 
commands to the muscles for execution. In a more modern metaphor, we would describe the 
situation as if the mind acts as a control center for the body, the way an air traffic controller keeps 
track of the incoming planes on a radar screen, analyzing the situation, and issuing directions to the 
pilots.  

While this picture may seem more satisfying to a scientifically trained mind than Descartes’ 
ghostly soul, it merely shifts the difficulty. The fundamental problem with the mind as control 
center is that it is equivalent to a homunculus (diminutive of the Latin “homo” = human being): a 
little person watching the theater inside our brain, and reasoning like an intelligent being in order 
to deal with the situation it observes. However, the point of the exercise was precisely to explain 
how a person reasons! We have explained the mind simply by postulating another, “smaller” mind 
(homunculus) within the mind.  

Such reasoning leads to an infinite regress. Indeed, to explain how the homunculus functions we 
must assume that it has a mind, which itself implies another homunculus inside it, which must 
contain yet another homunculus, and so on. It is as if we are opening a series of Russian dolls the 
one nested into the other one, without ever coming to the last one. Another way to illustrate the 
circularity of such reasoning would be to consider a recipe for making cake where one of the 
ingredients is cake: how can you ever prepare such a cake if you don’t already know how to do it? 
To evade this paradox, we need to make a radical break with the way of thinking that produced it. 



- 10 - 

The need for a systems view 

To stop such an infinite regress, we need to posit a place where it ends: the component of our brain 
where consciousness resides and where rational decisions are made. But unless we go back to 
Cartesian dualism, and postulate a mysterious, ungraspable soul, we will not find such a place 
where the outside world ends and the true mind begins. Indeed, trying to pinpoint the place where 
decisions are made, we still come to the conclusion that that place must be able to perceive what is 
going on outside of itself, and therefore that it must have a seat in the theater, bringing us back to 
the homunculus reasoning.  

The attempt to situate the mind in a specific place or separate component is a remnant of 
reductionism, the philosophy that explains all phenomena by analyzing them into separate parts, 
and then determining the properties of the parts. We should understand the mind not as a collection 
of parts, but as a whole, which is distributed over many components. It is not located in any one of 
them, but in the network of their relations or interconnections. Different parts of cognitive 
processes take place in different parts of the network, but there is no single part where everything 
comes together, no “seat of the soul”. We should also accept that there is no one-to-one 
correspondence between mental and physical components: the mind as a whole stands in a 
complex relationship to the world as a whole. Mental components do not behave like static, 
independent objects. They are part of a dynamic network of relationships: a process. Such a 
holistic and dynamic perspective requires a new scientific worldview, which we may call systems 
thinking.  

But before introducing the philosophy of systems, it is worth reviewing the ideas of traditional 
cognitive science. These can be seen as elaborations of the naïve reflection-correspondence view 
and its implied homunculus towards increasingly sophisticated and realistic theories. However, the 
true move away from the underlying reductionism will only come in a second stage, becoming 
most visible in the 1980’s, which we will call the “new cognitive science”. 
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Classical Approaches to Cognition 

A brief history of epistemology 

Before addressing cognitive science proper, we will quickly review the philosophy of mind that 
preceded the more scientific approaches, and that in part inspired them. Traditional epistemology 
(philosophy of knowledge) and the related philosophy of science and philosophy of mind has two 
major historical roots: rationalism and empiricism. 

Rationalism 

Plato—who can be seen as the founder of classical, Western philosophy—saw knowledge as 
apprehension of ideal, eternal forms. For example, a triangle is an abstract, geometrically defined 
shape that can only truly exist in the mind. Any concrete, observable triangle, perhaps as drawn 
with a piece of chalk on a blackboard, is merely a very imperfect shadow or distorted reflection of 
that ideal form. For Plato, an idea is more fundamental than its material realization. This defines 
the ontological position of idealism. Therefore, if we truly want to understand the nature of reality, 
we can only do so by abstract reasoning, not by observing nature. This defines the epistemological 
position of rationalism.  

To do that, we must start with foundational principles, such as Euclid’s axioms of geometry, and 
by deduction derive the rest of all possible knowledge—the way Euclid showed how a variety of 
theorems can be deduced from the axioms. Different rationalists proposed different foundational 
principles on which to build their cognitive edifice. The most famous one is Descartes’ Cogito 
ergo sum (I think therefore I am). While it is hard to find agreement on specific foundational 
principles, all rationalists by definition agree that knowledge is developed using reason or 
reflection. However, it is difficult to explain how reason alone can help us to discover such 
concrete, apparently contingent facts as that swans are white or that ice is cold. 

Empiricism 

The empiricists, in contrast, see knowledge as essentially the registration of perceptions. To 
develop knowledge, we should base ourselves on sensations, on the data we receive about the 
outside world through our senses. To avoid the problems of the naïve reflection view of the mind, 
however, the empiricists must also explain how more abstract knowledge is produced. They 
assume that this happens through the induction of general rules from recurrent, concrete 
observations. For example, the repeated observation that the sun rises morning after morning 
allows me to extrapolate that the sun will rise every morning. As such, the mind can induce causal 
laws out of the repeated co-occurrence of a sensed cause with a sensed effect.  
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However, as the philosopher David Hume noted, no number of observations, however large, can 
prove that the sun will always come up in the morning. More concretely, even after having seen 
thousands of swans that all were white, you may discover to your surprise that black swans do 
exist. Thus, while empiricism may seem a more practical and realistic philosophy than rationalism, 
it still has fundamental questions to answer. 

The Kantian Synthesis 

Immanuel Kant is considered one of the greatest philosophers of all time, in part because he was 
the first to propose a synthesis of rationalism and empiricism. First, he noted that we have no 
access to the Ding-an-sich, the thing-in-itself as it exists outside us, only to our necessarily 
imperfect perceptions of it. Therefore, there is no way to prove theories on the basis of 
observations alone. Some truths must be assumed a priori, i.e. on the basis of reason. For example, 
the axioms of logic and mathematics, such as the law of contradiction (A and not A cannot both be 
true), cannot be derived from observation. Others, though, such as the fact that the sun comes up 
every morning, must be observed a posteriori. Even then, observations alone are insufficient to 
induce general concepts. They must be supported by pre-existing cognitive structures which Kant 
called a priori intuitions or “categories” of thought. These are very abstract and general concepts, 
which include quantity, negation, possibility, existence, causality, time and space. They are 
necessary conditions for the receptivity of our mind, i.e. its ability to organize experience into an 
intelligible form. 

Logical empiricism 

In the beginning of the 20th century, the philosophers of the Vienna Circle developed a very 
influential epistemology known as logical empiricism, logical positivism or logical atomism. It 
too is a kind of synthesis of rationalism and empiricism, although it is more explicit and 
“scientific” than the one of Kant, and more leaning towards empiricism. They start from the idea 
that individual observations function as the atoms of knowledge, i.e. the smallest, objective units. 
No other, more abstract concepts should be used. This rather strong assumption is the positivists’ 
way to get rid of unproductive philosophical discussions, which typically center on ill-posed 
questions or ambiguously defined ideas, such as “What is the nature of God?” or “What are good 
and evil?”. In this, they follow one of the former members of the Vienna Circle, Ludwig 
Wittgenstein, who famously remarked that: “What one cannot speak about, one must remain silent 
about”.  

However, since knowledge is more than a collection of disconnected facts, these cognitive atoms 
must be assembled into a coherent theory or model of the world. This is achieved by means of the 
operators of formal logic (conjunction, disjunction, implication, quantifiers, etc.). The logical 
relations between propositions (which represent atomic observations) make it possible to make 
inferences about things as yet not observed. For example, the statement On_table(cat) & 
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Under_table(dog) allows us to infer Higher_than(cat, dog). As such, a theory can always be 
verified by observing whether its predictions are realized. The aim of the logical empiricists was to 
develop a universal language for science, so that all scientific theories could be expressed in the 
same explicit, unambiguous manner.  

Pragmatism  

Pragmatic philosophers base their epistemology on very different assumptions, which give priority 
neither to observation nor to reason. For them, there is no absolute criterion of truth, neither 
empirical nor rational. The only criterion that counts is that theories should be good at solving 
problems. Therefore, they do not mind using abstract, unobservable concepts, as long as they are 
useful.  

In mathematics, this philosophy was formulated most clearly by Henri Poincaré under the label of 
conventionalism. For Poincaré, mathematical theories are chosen by convention, because they are 
simple and practical, not because they are “true”. For example, in geometry there exist both 
Euclidean theories (based on Euclid’s axiom that two parallel lines never intersect) and non-
Euclidean ones (where this assumption is not valid). Both are logically consistent. As abstract 
mathematical theories, we cannot decide between the two by making observations. For most 
everyday situations, the simpler Euclidean theory is perfectly applicable, but in certain more 
advanced situations, like in Einstein’s theory of general relativity, we need to use a non-Euclidean 
one. It is up to us to decide which theory is most useful in which context. 

Evolutionary epistemology 

Karl Popper started his career as a member of the Vienna Circle, but became dissatisfied with its 
philosophy. His basic criticism was that logical empiricism fails to solve the problem of 
induction. He noted that a good theory makes an infinite number of predictions, while you can 
only make a finite number of verifications. For example, no matter how many times you verify the 
prediction that “a swan is white”, this will never prove the theory that “all swans are white”. On 
the other hand, the observation of a single black swan will disprove that theory.  

Therefore, Popper proposed to replace the criterion of verification by the one of falsification: you 
can only prove that a theory is false, not that it is true. If at least one of its predictions is 
contradicted by observation, then the theory is refuted. This is a general method to eliminate bad 
theories. However, there is no general method to generate good theories: you can only make 
plausible hypotheses, or what Popper calls “conjectures”, and check whether they survive attempts 
at falsification. The more attempts the theory survives, the more trust you can have in it—although 
you will never be absolutely certain that it is true. 

Popper’s falsificationism can be easily generalized to a more pragmatic theory of knowledge. First, 
we must note that a single contradiction with observation is in general not sufficient to reject an 
otherwise reliable theory. After all, observers can make errors too, if only because they use 
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instruments (such as telescopes or microscopes) that are themselves based on theories (e.g. the 
laws of optics) that are not absolutely reliable. The core of Popper’s philosophy, however, 
remains: theories are generated by trial-and-error. A variety of novel hypotheses are generated; 
after extensive testing, the bad ones are rejected and the best ones kept. This is remarkably similar 
to the mechanism of evolution described by Charles Darwin, where new types of organisms are 
generated by blind variation of existing designs, after which the bad ones are eliminated by natural 
selection.  

This insight led Donald T. Campbell to found the domain of evolutionary epistemology. His 
fundamental thesis is that all knowledge (not just scientific theories) is a product of blind variation 
and the selective retention of those knowledge structures that most adequately represent reality, in 
the sense that they are as little as possible contradicted by experience. For example, the belief that 
putting on wings like a bird allows you to fly will quickly be eliminated (together with its carrier) 
once you do the test and jump from a tower. If such testing goes on long enough, the remaining 
knowledge will be generally adapted to the reality or environment in which its carrier lives.  

Campbell and other evolutionary epistemologists applied this reasoning not only to theories and 
beliefs developed via reason or observation, but also to our in-born cognitive mechanisms, such as 
a bird’s instinctive knowledge of how to fly, and our instinctive fear of heights, which tells us not 
to attempt flying. Such instincts, perceptual mechanisms, and other inherited “categories” of 
thought are the product of evolution at the biological level. Natural selection across the generations 
has made sure that cognitive mechanisms that made too many errors have been eliminated. 
Therefore, our sense experiences and categories are basically reliable. However, they are not 
absolutely so, since evolution is fallible, as illustrated by the fact that we still sometimes fall prey 
to perceptual illusions and cognitive biases. 

From behaviorism to cognitive psychology 

The need for scientific observation 

The start of psychology as a science in the 19th century came with the observation that reflection 
and introspection—the methods used until then by philosophers—are not sufficient to study the 
mind. To start with, their results are far too subjective. This is obvious when we note how different 
people, including very intelligent ones such as Plato, Descartes and Hume, come to very different 
conclusions while using the same method of introspection. Moreover, some of their more 
sophisticated argumentations have shown how seemingly obvious, intuitive impressions about the 
mind can often be plain wrong—as we have illustrated with the homunculus fallacy. To make 
theories about the mind more reliable, we therefore must make mental phenomena objectively 
measurable.  
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This was the assumption that drove Wilhelm Wundt, who can be seen as the first scientific 
psychologist. To achieve this, Wundt designed clever experiments to quantitatively estimate 
different properties of the mind. He initiated one of the most popular paradigms in experimental 
psychology, the measurement of reaction time. This basically asks the question: how many 
milliseconds does it take to perform a particular mental operation, such as reading and 
understanding a particular word, or adding two numbers? Comparing the duration of different 
operations then allows us to confirm or falsify various hypotheses about how these operations are 
supposed to take place. For example, if our hypothesis states that operation A is more complex 
than operation B (e.g. because it encompasses an operation of type B as a subprocedure), then the 
observation that A requires less time to perform would contradict this theory. 

Behaviorism  

In its most extreme version, this reaction against introspection produced the psychological doctrine 
of behaviorism, which dominated academic psychology over the first half of the 20th century. It 
can be seen as a direct application of positivism to psychological research. Its basic assumption is 
that only observable behavior is worth investigating; abstract mental phenomena, such as ideas, 
feelings, or consciousness, have no role to play in a scientific theory.  

The basic paradigm underlying behaviorist theories and observations is that of stimulus-response. 
It drives the following generic experiment: 

• repeatedly subject a person or animal to an event they are bound a perceive: a stimulus 
(this could be a flash of light, a noise, or a word they have to read) 

• precisely observe each time the behavioral reaction: the response (this could be a 
movement, a sound made, something said) 

• try to find the (cor)relation between the two, i.e. when the experiment is repeated, in how 
far does the same stimulus tend to elicit the same response? 

The stimulus-response relations (S → R) that are induced in this way are the foundations (or 
“logical atoms”) of any behaviorist theory. In fact, for a behaviorist the mind is little more than a 
huge collection of S → R pairings. 

The biggest success of behaviorism, the demonstration of learning by conditioning, used a slightly 
more sophisticated version of such experiment. The classic example is Pavlov's dog. The Russian 
psychologist Pavlov repeatedly exposed a dog to the sound of a bell (stimulus) shortly before 
feeding the dog. After a few experiments, the dog starts to salivate (response) as soon as it hears 
the bell: it is conditioned to expect food after hearing the bell; it associates the bell sound with 
being fed. The more often this happens, the stronger the association becomes. This creation of 
expectations or associations between perceived events is called “classical conditioning”.  
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Another basic form of learning, termed “operant conditioning”, was investigated extensively by B. 
F. Skinner—mostly using animals such as rats and pigeons. The animal is confronted with a 
particular stimulus, such as a lever or button. Given that the animal generally does not know how 
to react, the response it produces—such as pushing down the lever—will initially be more or less 
random. However, if that response is followed by a reward (e.g. food), the behavior is reinforced: 
the next time the animal is confronted with such a lever, it will push it more quickly and eagerly. If 
the response is followed by a punishment (e.g. an electric shock), the behavior is suppressed or 
inhibited, and the next time the animal will be less likely to push down the lever. In this way, 
animals (and to some degree people) can be efficiently taught to exhibit almost any not too 
complex behaviors. For example, pigeons can be taught to peck in a particular order on a specific 
subset of differently colored or differently shaped buttons.  

Information processing 

Starting in the 1950’s, behaviorism was gradually overtaken by a more sophisticated, “cognitivist” 
approach that focused on more complex internal operations—which we would associate more with 
humans than with animals. This initial version of cognitive psychology was inspired by 
information theory and the first computers that had just made their appearance, and the input → 
processing → output paradigm on which they are based. Stimuli are now interpreted as 
information that enters the mind: input. Responses are seen as the corresponding output of the 
system “mind”. The focus, however, has shifted to the processing, i.e. the mental operations 
intervening in between stimulus and response.  

The mind is seen as similar to a computer performing some program that transforms and interprets 
the information. This means that it must contain one or more processor and memory components 
to process and store that information. Like in a computer program, cognitive processes are 
typically decomposed into different stages or subroutines—such as perception, pattern recognition, 
storing, inference making, retrieval, and evaluation—that are performed by specialized modules. 
The incoming information interacts with information that already resides inside the mind, e.g. as 
stored in one of the memory units. This internal state depends on previous experiences. This means 
that there is no longer a simple S → R relationship, since the same stimulus can lead to different 
responses, depending on the information stored in memory. For example, the stimulus question 
“Do you believe me?” will get different responses depending on what the person who asked the 
question said previously.  

Memory 

One of the biggest advances brought by the information-processing approach is an elucidation of 
the phenomenon of memory. The computer analogy suggests an immediate distinction between 
two essentially different types of memory:  
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 Short-term or working memory is similar to computer RAM, in which on-going operations 
are performed. It contains the present state of the process, dependent on just the last few 
inputs and operations. In humans, it turns out that working memory has a very limited 
capacity: only 7± 2 items can be actively kept in mind without taking note, e.g. when trying to 
remember a shopping list. The cognitive psychologist George Miller, in a classic paper 
discussing these limitations, called this the “magical number”. Working memory has more 
important uses than storing shopping lists, though: you need it to keep in mind and evaluate 
different possible combinations of concepts while reasoning about a problem. Therefore, the 
limitations of working memory impose strict limitations on your capacity for conscious 
information processing. For example, to perform a multistep calculation, such as (2 × 4) + (3 
× 3), in your head, you need to store the provisional results (8 = 2 × 4, and 9 = 3 × 3) in your 
working memory before you can compute the final result (17 = 8 + 9).  

 Long-term memory (LTM) is similar to a computer hard disk. It is used to store possibly 
useful data for an indefinite duration so that they may be reused later, whenever they turn out 
to be relevant. For example, to perform the above calculation you need to know the tables of 
multiplication, which include such facts as 3 × 3 = 9. LTM has a virtually unlimited capacity, 
containing at least millions of facts. Unlike a hard disk where data are sequentially stored, 
however, it is organized as a network of concepts connected by associations. This means that 
information retrieval from LTM works in a way very different from a computer, which 
automatically locates and reproduces the exact bits that it registered on its hard disk. There 
are two basic processes: 

o recognition is the matching of an input pattern (perception) to a pattern stored in 
LTM. This works automatically, quickly and reliably. The perception (e.g. of a 
person’s face) activates the associated memory (e.g. who the person is) 

o recall, on the other hand, is the reactivation of a pattern in LTM without matching 
input pattern, e.g. when trying to remember the name of your primary school teacher. 
This is much more difficult, requires conscious attention, and often fails, even when 
the pattern is safely stored. This happens e.g. when people say that the name is “on 
the tip of their tongue”. 

Semantic Networks 

A further investigation of the way knowledge is structured inside LTM led cognitive psychologists 
to the theory of semantic networks. A semantic network is a network consisting of concepts, 
represented as nodes, that are connected by links. Both concepts and links belong to different types 
or categories. Concepts may include cognitive representations of events (such as WWII, or 
your_wedding), of objects (such as your computer, your dog Fido, your boss John), of classes of 
objects and events (such as the class of all weddings or all dogs), and properties or features of 
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objects or events (such as the property of being brown, or long-haired). The network is called 
“semantic” because the meaning of a node is determined by the whole of its links with other nodes.  

The most important type of link connecting concepts is called Is_A , as in “Fido Is_A Dog”, or “a 
Dog Is_A Mammal”. Is_A connects instances (specific objects or events) or classes to the more 
encompassing classes that they belong to. The Is_A relation induces a hierarchical ordering on 
concepts, from more specific to more general. Other common semantic relations or link types 
include Has_Part (e.g. Dog Has_Part Tail) and Has_Property (e.g. Dog Has_Property 
Barks). But in fact, any type of relationship (e.g. Brother_of, Larger_Than, Has_Color, …) can 
in principle be used as a link type in a semantic network. This unlimited freedom is both the main 
strength (flexibility) and the main weakness of semantic network representations: cognitive 
scientists have not been able to agree on which link types should or should not be included in a 
representation of LTM. Yet, it seems unlikely that the brain would use a different type of link for 

any conceivable type of relationship. 

A major strength of semantic network 
models is that it is easy and intuitive to 
make inferences by following sequences of 
links. For example, a pigeon is a bird and a 
bird is an animal, therefore a pigeon is an 
animal. Similarly, if we know that a Honda 
Civic Is_A Car, that a Car Is_A Vehicle, 
and a Vehicle Has Wheels, then we can 
deduce not only that a Honda Civic is a 
vehicle, but that it has wheels. In semantic 
network terminology, the Honda and Car 
categories have inherited the property of 

having wheels from their vehicle supercategory. This seems like a pretty straightforward visual 
representation of logical inference. Yet, psychological research has demonstrated an important 
cognitive mechanism, default reasoning, that does not follow the strict rules of logic.  

First, it has been observed that in the mind concepts are not defined as logical categories obeying 
the principle of the excluded third (i.e. either something belongs to category A or it does not 
belong). Instead, concepts should be viewed as “families” or clusters of items that are more or less 
similar, but such that there is no strict boundary between the items that are inside and those that are 
outside the category. For example, while Car and Truck definitely belong to the “Vehicle” 
category, this is much less obvious for Wheelbarrow or Toy_Truck, which have some of the 
typical properties of vehicles (such as wheels), but lack others (such as the ability to transport 
people).  
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Such a cluster is centered on a prototype, which is a kind of generalized, “most typical” instance 
of the category. For example, a prototypical bird is small, lays eggs, has feathers, and flies. The 
properties of the prototype will normally be linked to the node representing the category.  

 

Yet, an ostrich is large and cannot 
fly, but it is still a bird. In a 
semantic network, it is assumed 
that subcategories and instances 
inherit their properties by default 
from the higher category. “By 
default” means: unless there is 
evidence to the contrary, i.e. 
unless the instance is somehow an 
exception to the general rule. In 
that case, the exceptional 
properties are linked directly to the 

instance, overriding the properties that are indirectly inherited. For example, ostrich inherits “lays 
eggs” and “has feathers” from bird, but the direct link from ostrich to “cannot fly” overrides 
the inherited property “can fly”. Inheritance by default makes the memory network much more 
efficient, since links or properties only need to be stored at the level where they are most likely to 
be needed. Thus, if we learn about a new type of bird, we do not need to explicitly memorize that 
it lays eggs, has feathers, can fly, etc. since it inherits these properties by default from the bird 
category. We only need to learn its truly distinguishing features, e.g. that it lives in the rain forest 
and has a long purple tail. 

Problem solving 

The essence of intelligence 

So far, the topics we have discussed have little to do with intelligence as it is conventionally 
understood. This is no longer the case with problem solving: intuitively, the more complex the 
problems you can solve, the more intelligent you are supposed to be. Problem solving as a domain 
was first investigated scientifically by Newell and Simon in the 1950s and 1960s. To do this, they 
developed the technique of protocol analysis: after proposing a problem to a person, they let him 
or her solve it while “thinking aloud”, i.e. putting into words every idea that comes to mind while 
reflecting on the problem. The experimenters write down all these reasoning steps, and afterwards 
analyze this “protocol” to see which steps and assumptions the subjects have made.  
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A classic problem analyzed in this way is the following puzzle. In the sum below, numbers have 
been replaced by letters. Given that D = 5, find the corresponding numbers for all the other letters 
so that the sum is correct: 

    DONALD 

 + GERALD 

 = ROBERT 

A protocol may then start with “5 + 5 = 10, therefore T must be equal to 0. L + L is an even 
number but since you need to add the 1 of 10 to their sum, R must be uneven…”  

Other examples of the kind of problems considered by Newell and Simon are proving a 
mathematical theorem (for which they built a computer program that could prove theorems in 
formal logic) and winning a game of chess. But problems do not need to be of the intellectual or 
puzzle type: they can also be very practical—like getting your car to start on a cold morning. 
Inspired by their psychological observations and computer simulations, Newell and Simon 
developed a general theory of problem solving that is in principle applicable to any problem, 
leading them to design what they called the General Problem Solver. This theory was later used 
and elaborated by many others, and is centered on the concept of search. 

Any problem is characterized by:  

• an initial state, i.e. the situation you start from but that is unsatisfactory (such as a car that 
does not start, or an unsolved puzzle);  

• a goal state, i.e. a conceivable situation that would satisfy your criteria for a problem 
solution (such as a car that drives, or a puzzle where all the pieces have fallen into place).  

The problem can then be defined as: how can you find a goal state starting from the initial state?  

According to Newell and Simon, the most general method to search for a goal state is generate-
and-test. First, you need to generate a new state starting from the present state. This happens 
typically by applying a predefined “operator”, i.e. a certain type of move that is possible according 
to the constraints or rules of the situation. For example, in chess certain moves are allowed 
depending on the type of piece (e.g. queen or knight) and the configuration on the chessboard. 
With a car, a possible move is to check the fuel meter or to open the hood to check the batteries. 
Such moves in general need to be performed in the right order: it is not possible to check the 
batteries before first opening the hood. Once you have moved to a new state, you need to test it: is 
it a solution or goal state (e.g. is there a checkmate)? If not, then you again need to generate a new 
state. This procedure is repeated until a solution is found. Note that generate-and-test is essentially 
equivalent to trial-and-error or variation-and-selection. This rudimentary method can be studied in 
more detail by introducing the concept of a search space. 
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Search spaces 

All the possible states that can be generated by applying a sequence of possible operators together 
define an abstract problem space. Problem-solving can then reformulated as: finding a path or 
trajectory through the space that leads from the initial state to a goal state. This path is preferably 
as short as possible.  

 

The difficulty is that the number of possible trajectories or states to be tested increases 
exponentially with the number of moves. Suppose that in each state there are 10 operators 
applicable to generate new states. This means that for one move there are 10 possibilities, for two 
moves 10×10 = 100, for three moves 10×10×10 = 1000, etc. Because of this exponential explosion 

in the number of possibilities to be considered, in practice it is impossible to systematically 
explore the search space for more than a few moves away from the initial state: we cannot consider 
all the possible states to check whether one of them is a goal state. For a more concrete example, 
consider chess: in each round of the game there are about 1000 moves and countermoves possible. 
Suppose that you would try to think 8 steps ahead. This means that you must consider 10008 = 1024 
possibilities, an astronomical number! According to this reasoning, even the simplest problems 
quickly become unmanageable. The conclusion is that generate-and-test must be supplemented by 
methods to reduce the size of the search space.  

Generate-and-test or trial-and-error is an essentially blind method of search: the searcher has no 
foreknowledge of where to look in the search space. In practice, knowledge or expertise is needed 
to effectively solve problems. Cognitive scientists have observed again and again that the true 
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experts, such as chess grandmasters, car repair specialists or medical doctors, know plenty of 
specific methods to reduce search in their domain. These methods can be divided in two 
categories: 

• algorithms are systematic, deterministic procedures guaranteed to produce a solution after 
a certain time. An example of an algorithm are the rules that we use to perform a division, 
or to solve a set of linear equations. 

• heuristics are rules of thumb, that may or may not work, but that generally lead to the 
solution much more quickly than blind search. They do this by focusing the attention on 
the (small) part of the search space that is most likely to contain the solution. An example 
in chess is trying to capture the most powerful pieces (e.g. the queen) of your opponent, 
rather than immediately searching for a checkmate.  

General heuristics 

Most algorithms and heuristics are very domain-specific: they required specialized knowledge, e.g. 
about algebra, chess strategies, medical diagnosis, or car maintenance. However, there are a few 
heuristics that are in principle applicable to any domain, and that therefore are of general use in 
problem solving, even when the problem-solver has as yet no knowledge about the domain. 

Analogy 

Analogy is a method we all use, consciously or unconsciously. The principle is to try to reduce a 
new, unknown problem to a problem already solved earlier, so that we can apply the specific 
methods that have been successful in the previous case. For example, if the problem is that a 
motorboat doesn't start, then you can try to find the components in the boat that appear equivalent 
to the components you know in a car, and try the same approach as when a car doesn't start. When 
trying to calculate the energy levels for a helium atom, a physicist will typically start by 
remembering how these are calculated for the (much simpler) hydrogen atom.  

This is why complex problem domains (such as cognitive science) are typically explained by 
means of concrete examples. By seeing the analogy between a new type of problem, concept or 
theory and a phenomenon you already know and understand, the new idea will become much more 
easy to grasp. This explains why scientific approaches (“paradigms”) are rarely formulated in the 
form of abstract principles, and more commonly through a collection of exemplars: typical 
phenomena, cases, or experiments that are easy to understand and remember but that can be 
generalized to more universal rules when needed. The exemplars function like prototypes from 
which other cases inherit most of their properties by default. The only thing that needs to be added 
are the distinctive features of the cases, i.e. their specific properties that deviate from the default 
expectation. Problem-solving can then concentrate on these distinctive features, while applying 
well-known algorithms or heuristics to the default features. 
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Divide-and-conquer 

If a problem is too complex to systematically search for possible solutions, you can make it much 
simpler by dividing or “factorizing” it into subproblems. Starting from the goal (end), you try to 
determine intermediate steps (subgoals) to get there. The principle is that, if you have one by one 
solved each subproblem (reached its goal state), then you have solved the problem as a whole. The 
subgoals act as “stepping stones” towards the final solution, making a seemingly insoluble 
problem easy. 

Example: assume your car is out of fuel and you need to refill it while being unable to drive. You 
can factorize that problem into the following subproblems, each of which is relatively easy to 
solve: 

- find container 

- locate petrol station 

- go with container to petrol station 

- fill container 

- return with container to car 

- fill tank from container 

The big benefit of factorization or divide-and-conquer is that it stops the exponential explosion 
in the number of states that you need to explore. Indeed, you only need to look ahead to the next 
subgoal, which is typically only a few moves away. A smaller number of moves implies an 
exponentially smaller number of trajectories to consider.  

Example: chess: assume that you can split up an 8 step look ahead into 4 subgoals, each 2 steps 
ahead. The number of moves to consider is then reduced from 10008 to 4 × 10002 

Means-Ends Analysis 

Newell and Simon in their General Problem Solver have developed a more sophisticated version of 
factorization, which they called Means-Ends Analysis. The idea is to see each subproblem (or 
“end”) as a specific difference between initial state and goal state that needs to be reduced. Solving 
the problem then means finding operators (means) to eliminate each of the differences in turn, thus 
transforming the initial state into the desired end state. In the car out of fuel problem, an example 
of an operator or “means” to tackle the “locate petrol station” subproblem is to “look on map”. 

Hill-climbing with backtracking 

Here the assumption is that you can estimate the “closeness” to the goal of the present state. This 
corresponds to a measure of the “goodness”, quality or fitness of that state. In chess, you could 
estimate your closeness to the goal of winning the match by counting the difference between the 
chess pieces that you captured and those that you lost. Visualize this measure now as “height”, i.e. 
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elevation above the plane that represents the search space. The goal state or solution then is the 
highest point in the landscape, i.e. the top of the hill. To reach that point, you can use the following 
hill-climbing heuristic: of the different possible moves/operators available in the present state, 
choose the one producing the “highest” or best next state. In other words, follow the path with the 
steepest ascent. Since you only need to look one step ahead, there is a maximal reduction of 
search. You repeat this ascent until a state with satisfactory fitness is obtained. 

This method has a major shortcoming, though: there may be local maxima, i.e. small hilltops that 
are lower than the main hill, with unsatisfactory fitness. On such a local maximum, all next moves 
can only reduce the height, so the hill-climbing rule is no longer applicable. The solution is to 
backtrack, i.e. go back to the previous state and choose the next best option there, in the hope that 
it will not end up in a local maximum. You may need to backtrack repeatedly before getting back 
on a path leading to high quality states. 

Representation change 

Here the principle is that by redefining or reformulating states, operators and/or fitness function, an 
apparently unsolvable problem may become trivial, or at least much easier. This happens by 
reducing the search space or number of operators that need to be applied. 

Example: Roman numerals vs. Arabic numerals.  

Multiplication is relatively easy with Arabic numbers, but practically impossible with Roman 
ones. Addition, on the other hand, is very easy with Roman numerals: XXII + XV = XXXVII. 
Thus, by changing the representation of numbers, we can make a very difficult problem much 
easier. 

Example: mutilated checkerboard problem.  

Consider a checkerboard that lacks two squares 
on the opposite sides of the diagonal. Given that 
one domino covers two adjacent (horizontally or 
vertically) squares, can you find a way to place 
dominoes so that all squares are covered? At first 
sight, this problem is very difficult: there are 
hundreds of possible combinations of dominoes 
to try out. Now, redefine the main operator: one 
domino covers not just two adjacent squares, but 
1 black and 1 white square. Since the 

checkerboard lacks two squares of the same color (black in the drawing), it now becomes 
immediately obvious that it cannot be covered in this way. 
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Symbolic Artificial Intelligence 

Computer simulation as method 

The computer appears as a perfect tool to simulate abstract reasoning processes. Assume that a 
computer program gets the same input as an intelligent person, such as a question or problem 
description. The simulation works if the program produces the same or equivalent output as the 
person, such as the desired answer or problem solution. If we manage to write a program that 
systematically achieves that, then we can say that we have really understood what intelligence is. 
The philosophy underlying computer simulation as a method to study cognition can be 
summarized as “I'll understand it only when I can build it”.  

This method has several advantages over earlier approaches: 

• it avoids the vagueness and subjectivity of introspection 

• it avoids the limited access to the mind of empirical observation 

• it forces researchers to be explicit about all components and processes of intelligent 
behavior, since a computer can only understand completely formal descriptions 

How do we recognize an intelligent computer program? 

One of the big issues in Artificial Intelligence (AI), defined as simulating human intelligence by 
means of computer programs, is the success criterion: when can we say that we have truly 
designed an intelligent program? An intuitive criterion is implied by the definition, “Intelligence is 
the ability to solve complex problems”. However, what we consider simple, for example 
recognizing a friend in a crowd, often cannot be done by a computer. On the other hand, what is a 
complex problem for us may be simple for a computer, for example making a long calculation.  

A commonly used assumption is that “Intelligence is everything a computer cannot do”. This is an 
implicit criterion used by people critical of the possibility of AI: since they a priori assume that 
computers cannot be truly intelligent, any advance made by AI researchers is interpreted by them 
merely as evidence that the behavior that the AI program now simulates does not require real 
intelligence. For example, critics of AI have maintained for decades that computer programs could 
never win a chess match against a human Grandmaster. But this objection had to be abandoned 
when the IBM computer Deep Blue convincingly beat the world champion Gary Kasparov.  

Obviously, this is not very fruitful as criterion. This brings us to the most generally accepted 
criterion. 
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The Turing test 

The criterion advanced by the computer scientist Alan Turing is the following: you have achieved 
real Artificial Intelligence when a 
person conversing freely with a 
computer program (via some text 
terminal so that the person cannot 
see who is producing the 
sentences) cannot distinguish it 
from a true human. While this 
seems more objective, intuitive 
and easy to measure than the 
previous criteria, it too suffers 
from some serious shortcomings: 

In some ways, success in the 
Turing test may be much easier to 
achieve than it seems. Indeed, 
already in the 1960’s the Eliza 
program, which reacted to 

questions by restating them, and then formulating related questions, fooled people into believing 
that it was a human psychotherapist. It is not difficult to mislead people, as illustrated again and 
again by stage magicians. 

On the other hand, people such as children, mentally handicapped persons or people from a 
different culture, may be intelligent in advanced ways without being able to hold a sophisticated 
conversation about common topics 

In addition to these practical problems, there is a more fundamental objection to the assumptions 
behind the Turing test. 

The Chinese room thought experiment 

This thought experiment was proposed by the philosopher John Searle to demonstrate that even the 
most sophisticated computer program cannot exhibit real intelligence. Imagine the following 
situation: a (non-Chinese speaking) man in a room receives pages with Chinese characters. 
Following elaborate written procedures, he responds to each page by assembling another set of 
Chinese characters. If the procedures are sufficiently sophisticated, a Chinese person outside the 
room may get the impression that these are intelligent responses to his questions. In other words: 
the room passes the Turing test for intelligence. Yet, neither the man in the room (processor) nor 
the written procedures (program) have any understanding of Chinese. In Searle’s view, an AI 
program is nothing more than an automated, electronic version of a Chinese room. Therefore, we 
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must conclude that whatever seemingly intelligent behavior it appears to mimic, it lacks the 
fundamental understanding of the world that is required for intelligence. 

The reply of AI proponents is that Searle’s analysis is too reductionist: while neither component 
may understand Chinese on its own, the room as a whole (man interacting with procedures) does. 

 

  

Toy worlds 

Another criterion for intelligence is that an intelligent computer program should be able to deal 
with the real world. But since the world as a whole is too complex to simulate in a computer, we 
can build a simplified, “toy” version of it, and 
see how well an AI program can deal with it.  

A traditional example of such a simplified 
environment is a “Blocks world”, which 
consists of a virtual space in which blocks of 
different shapes and colors are strewn around. 
The program must find ways to manipulate the 
blocks in order to reach particular goals by 
reasoning about the situation: e.g. “block c lies 
on top of block b, therefore to reach b, I should first remove c”. If this works, the physical 
equivalent of a simulated toy world may then be explored by a robot using the same AI program.  
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Symbol systems 

The fundamental units of AI simulations are symbols. These are abstract patterns inside the 
computer, such as b, that represent or symbolize an outside phenomenon, such as a block. An 
example in human cognition is the word “cat” which symbolizes or stands for a catlike animal. 
Symbols are very easy to manipulate: they are formal or abstract, in the sense that they are 
decoupled from the phenomena they represent. Therefore, they can be manipulated independently 
of these phenomena. At the same time, they can be implemented in a very concrete, physical way, 
e.g. as spoken words, letters on paper, or electromagnetic configurations in a computer memory. 
This makes it easy to process them mechanically, according to fixed rules—whether by a human or 
a computer. 

The basis of an AI program is a knowledge representation. This is a system of symbols 
connected by relationships or rules, such as a semantic network or a collection of formulas in 
predicate logic. It functions as a formal model of the knowledge that the system has about the 
phenomena represented by the symbols. As we noted when discussing problem-solving, different 
representations may be useful for different domains or types of problems.  

This general approach to modeling cognition is based on the physical symbol hypothesis. It was 
formulated by Newell and Simon as: 

a physical symbol system has the necessary and sufficient means to produce general 
intelligent action. 

More precisely: any system (human or machine) exhibiting intelligence must operate by using 
elementary physical patterns (symbols), combining them into structures (expressions), and 
manipulating these expressions (using rules or procedures) to produce new expressions (inference). 
Solving a problem simply means representing the problem’s initial state as a combination of 
symbols (input), and then applying operators, algorithms and heuristics to combine and recombine 
these symbols (processing), until a new combination is produced that can be interpreted as a goal 
state or problem solution (output). 

Criticism: While this assumption appears adequate for higher-level, formal types of reasoning such 
as playing chess, or proving theorems, it seems less appropriate for everyday intuitive action or 
low-level information processing such as interpreting visual stimuli. More fundamentally, the 
physical symbol hypothesis makes abstraction of the relation between a symbol (the signifier, in 
semiotic terminology) and the phenomenon it represents (the signified): it assumes that 
manipulating the signifiers alone is all that it is needed to produce intelligence. By that it ignores 
the processes that produce the signifiers in the first place, i.e. the interactions between the outside 
phenomena and their inside representations. While this abstraction makes modeling intelligence 
much simpler, it leads straight into the symbol grounding problem, as we will detail shortly.  
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Generative Grammars 

Generative grammars, introduced by the cognitive linguist Noam Chomsky to describe the 
foundation of human language, are rules to combine symbols (words) into expressions (phrases or 
sentences). Since these rules can be applied recursively (meaning that the same rules can be 
applied again and again to the same initial expression in order to generate ever more complex 
expressions), generative grammars can generate an infinite number of possible expressions. Yet, 
this infinity is still only a fraction of the infinite number of all possible combinations of symbols. 
Only the expressions generated according to the rules are grammatically correct, and therefore 
meaningful. 

Parsing is the process of analyzing an expression in order to find the sequence of rules that has 
generated it. When an expression or sentence has been parsed, its logical structure has been 
uncovered. This is necessary for natural language understanding, but also for understanding an 
expression in any symbolic knowledge representation. Expressions that cannot be parsed are 
meaningless for an AI program. 

Inference 

The core mechanism in AI is the process of inference, which uses the knowledge stored in 
symbolic form to derive new symbolic knowledge. This is modeled on logical or mathematical 
deduction. Expressions initially assumed to be true play the role of the axioms of the formal 
system. They represent the primitive knowledge or basic assumptions of the system. These 
expressions are usually inserted by programmer—although they may in principle also result from 
perception of the outside world. They are usually formulated by means of predicate logic or a 
similar formalism, as illustrated by the following expressions. 

Examples:  

-  Bird(sparrow) : Predicate logic representation of “a sparrow is a bird” 

-  (forall x): Bird (x) ⇒ Has_Feathers(x): representation of “all birds have feathers” 

-  Larger_than (ostrich, blackbird): “an ostrich is larger than a blackbird” 

-  Larger_than (blackbird, colibri) 

-  Larger_than (x, y) & Larger_than (y, z) ⇒ Larger_than (x, z) 

Using deduction rules that have been built into the program, the system can then derive new 
expressions from known expressions. 

Example: if A and (A ⇒ B) are both true, then B is true: this is the well-known modus ponendo 
ponens deduction rule. 

Expressions inferred in this way then correspond to the theorems of the formal system, i.e. true 
expressions that are derived from the axioms. 



- 30 - 

Example: from the axioms in the previous example, we may deduce the following expressions: 

- Has_Feathers (sparrow) 

- Larger_than (ostrich, colibri) 

A problem or question that the system must answer then simply corresponds to an expression to be 
proven or disproven. For example, animal (penguin)? This expression is considered to be true if we 
can find a sequence of deductions from the axioms that produces this proposition as a theorem, and 
false otherwise. Alternatively a problem or question can be stated as: find the values of the 
variables (x, …) for which the expression would be true, e.g. bird(x) & Cannot_fly (x) ? Given this 
question, the system will try to find all x that fulfill this condition, i.e. all birds that according to 
the stored knowledge cannot fly. 

Prolog is a programming language used in AI that is based on a simplified form of predicate logic 
(similar to the examples we gave). Entering an expression like the one above in Prolog will 
automatically produce an answer. The algorithm it uses is based on backward chaining: starting 
from the expression to be proven, it searches for expressions that imply it, filling in the variables 
when needed, until it gets down to one of the “axioms” or expressions assumed to be true. In AI, 
there exist various such algorithms and systems of deduction rules for deriving true expressions 
from given axioms. Together, they constitute what is called an inference engine. Different 
inference engines have typically their own strengths and weaknesses, the one working better on 
one type of problems, the other in another.  

Expert systems 

In practice, a purely deductive logic is not sufficient for real-world problems: knowledge is not 
that clearly defined or consistent. Instead, human experts use specific heuristics or rules of thumb 
to produce “likely” answers, rather than answers that can be proven to be true. We already saw 
default reasoning as an example of such less than logical inference. In addition to semantic 
networks, another common format to represent such “approximate” reasoning are production rules, 
which have the form: 

IF A is true, THEN B is true with probability or confidence x,  

(where x is commonly less than 100%. ) 

The inference engine must determine which rules are relevant in a given situation and choose 
which one(s) to apply. AI systems built on such practical knowledge rules for specific domains, 
are commonly called “expert systems” or knowledge-based systems. The design of such systems 
is called “knowledge engineering”. They have many practical applications, such as medical 
diagnosis (MYCIN, one of the very first experts systems helped with the diagnosis of lung 
diseases), or the repairing of televisions or other complicated technical systems that require a lot of 
expertise. 
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Shortcomings of the symbolic paradigm 

The ideas underlying classical artificial intelligence, as founded on the physical symbol 
hypothesis, can be seen as a paradigm for the whole of cognitive science. Symbols, knowledge 
representations, generative rules, and inferences have also been postulated as the building blocks 
of knowledge in domains like linguistics, psychology, logic and philosophy of science. AI has 
shown how powerful, detailed and explicit models of cognitive processes can be built out of these 
elements. Moreover, these models have produced some impressive practical applications, such as 
expert systems, theorem-provers and chess-playing programs. 

In addition, symbolic models are simple and intuitive. They can be seen as extensions of the 
reflection-correspondence theory of knowledge: each mental symbol reflects or represents an 
aspect of the external situation. Yet, they avoid naïve realism: there is no simple correspondence 
or mapping from material objects to mental symbols. The reason is that symbols not only represent 
concrete objects or instances, but also abstract categories and relationships. They also side-step the 
homunculus problem: the role of the homunculus interpreting the representations is played by the 
inference engine. Like logical empiricism, symbolic cognitive science integrates empiricism 
(because most symbols stand for observable features) and rationalism (because inference engines 
can produce new knowledge by reasoning). Symbolic CS has moreover assimilated the lessons of 
pragmatism: symbolic representations are not chosen for their verifiability or their “objective” 
correspondence to reality, but for their efficiency in problem-solving. In conclusion, the symbolic 
paradigm appears like a flexible, elegant and general foundation for cognitive science. 

In spite of these advantages, symbolic CS has encountered fundamental problems, which we will 
now review. 

Failure to simulate real-world intelligence 

Most obviously, in spite of half a century of research, AI has failed in its main aim: the simulation 
of a human level intelligence that is general, i.e. that can adapt to a broad variety of tasks and 
domains. The only successes are very specialized, “expert” programs and simulation of toy worlds. 
There has never been a program passing a satisfactory Turing test. At this moment, there exist no 
intelligent robots. Present-day robots are either extremely specialized machines used in industry, 
e.g. to assemble small components, or more general-purpose “electronic pets” with an intelligence 
level comparable to an insect.  

Even the much less ambitious early goal of AI, automatic translation between different human 
languages, has failed to come near to any human level of reliability (just try the different automatic 
translators available on the web). Moreover, those translating programs that are most effective 
have abandoned the true AI approach of trying to understand words and sentences in favor of more 
low level approaches such as gathering a lot of statistical material about the occurrence of different 
expressions in different languages, and seeing which expressions are most likely to occur in a 
given context. 
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This does not imply that the many critics who claim that AI is in principle impossible are correct, 
but only that the traditional symbolic approach to AI has not been able to live up to its promises. 
Let us try to understand more fundamentally which obstacles this approach has encountered. 

The knowledge acquisition bottleneck 

A first observation made by AI researchers is that formal inference capabilities are useless to 
tackle real-world situations without sufficiently detailed and concrete knowledge. To reach a level 
comparable to adult humans, an AI program would need to know millions of facts. However, it is 
very difficult to exteriorize and formalize the knowledge that people use intuitively. Knowledge 
engineers, who develop expert systems, have called this the knowledge acquisition bottleneck: it 
is much easier to enter symbolic knowledge into a computer system than to get it out of a human 
expert’s head. The reason is that humans do not reason logically, and do not store their knowledge 
in an explicit, symbolic form. Most knowledge is fuzzy, subconscious and intuitive. It is therefore 
very difficult to express in the form of logical statements.  

As a result, AI programs have always lacked common sense or “real-world” knowledge. Initially, 
researchers thought that this was only a problem of quantity of knowledge, and that it would 
suffice to collect an extensive amount of expressions that describe the world as we know it. This 
led to the CYC project, which was started in 1984 by AI pioneer Douglas Lenat with a large team 
of collaborators to collect all “common-sense” knowledge that the average human possesses. At 
this moment, the knowledge base contains over a million human-defined assertions, rules or 
common sense ideas. Typical pieces of knowledge represented in the database are “Dogs are 
animals” and “Animals die eventually”. When asked whether dogs die, the inference engine can 
draw the obvious conclusion and answer the question correctly. However, after more than 20 years 
of development, the CYC project still has not produced any really impressive applications. 

The knowledge representation problem 

As we noted when discussing problem solving, different representations of the same problem 
domain each have their own advantages and disadvantages. No representation is adequate for all 
possible cases. In practice, this means that whatever representation you are using, you will 
encounter plenty of cases in which this representation is highly inefficient, i.e. where searching for 
solutions to the problems takes far too long to be practical. This observation has led to attempts to 
automatically transform one representation into another one, but except for some specific cases, 
this turned out to be too ambitious for representations in general. The reason is that symbolic 
representations are intrinsically rigid: their elements or “atomic units”, the symbols, are a priori 
given, and therefore cannot be changed. At most, we can change some of the grammatical rules by 
which symbols are combined into expressions, but if the best conceptualization of the problems 
cannot be expressed by the given symbols, this will not be of much help. 
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Closely related is the problem of learning or knowledge discovery: how can you program a 
computer to extract or induce new concepts and rules from data? The AI-related domain of 
“machine learning” and its more application-oriented descendant of “data mining” have produced 
quite a number of useful techniques. Yet, most of these are not based on the symbolic paradigm 
with its qualitative reasoning, but on various more quantitative and trial-and-error based 
algorithms, including statistical methods, genetic algorithms and neural networks (see further). 

Lack of autonomy 

The problem runs even deeper. Even with plenty of knowledge and an adequate symbolic 
representation, logical or probabilistic deductions are insufficient for modeling common-sense 
understanding of the world. One of the problems is simply: when should the system stop making 
inferences? An infinite number of theorems (derived expression) can be deduced from a finite 
number of axioms (basic expressions). However, most of those have no real-world relevance or 
utility, and the computer program will just get bogged down producing ever more trivial or 
meaningless observations.  

There is nothing in the formalism to determine which expressions are relevant. This means that we 
need heuristics and adapted problem representations to reduce the search space, and steer us 
towards practical goals. However, these heuristics are very context-dependent: what works well in 
one domain, generally does not work in another domain. The problem then is: how can we fully 
specify all necessary and sufficient conditions to come to a meaningful conclusion? In the domain 
of planning action, this has become known as the frame problem: which are all the relevant facts 
that we should consider when planning our actions, and when can we stop deducing further facts? 

More fundamentally, the problem is that AI programs are designed as question-answering systems: 
it is the human user who introduces the problem or question that the system is supposed to tackle. 
This is obvious in the Turing test, where the intelligence of the system is probed by asking 
questions. Human beings, on the other hand, are autonomous: they decide for themselves what 
problems to tackle, which issues to pay attention to, or which, if any, questions to answer. As such, 
they do not have to wonder about how many inferences to make, or which axioms are relevant. 
What is relevant depends on their own goals and preferences. These are more fundamental to their 
cognitive functioning than any questions artificially introduced by some experimenter. 

The symbol grounding problem 

Traditional AI is based on the manipulation of abstract symbols. However, although symbols are 
supposed to represent outside reality, it is never specified how they do this, i.e. how they are 
grounded in reality. Given the way symbols are used inside the program—undergoing 
combinations according to formally specified rules—they might as well correspond to meaningless 
concepts with no counterpart in reality. This may remind us of the way medieval philosophers 
were pondering deep questions such as “How many angels can dance on the head of a pin?”, when 
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no one had ever observed an angel. This might not be a problem if there were a simple, 
unambiguous correspondence between symbols and objects in the outside world. But this is what 
we have called the reflection fallacy: knowledge is not simply a reflection of an objective reality.  

To check what a symbol means we need a process of perception that compares external situation 
and internal representation. By starting with symbols, AI has neatly sidestepped the problem of 
perception. But attempts to build robots, which cannot function without some kind of perceptual 
apparatus, have shown that human-like perception is a much more complex process than anybody 
had anticipated. The most cogent arguments brought forth by critics of AI, such as John Searle and 
Hubert Dreyfus, focus on the fact that AI programs have no experience of the phenomenal world: 
they exist in a purely symbolic realm where there are no such things as sensation, feeling or 
perception. 

Conclusion 

We can summarize the above observations by noting that symbolic AI, and with it most of 
traditional cognitive science, is too rationalist and logical. Logic has turned out not to be a 
sufficient foundation for modeling cognition. It leaves no space for subjective experience, intuition 
or feeling. Moreover, starting with symbolic representations implies that there is no interaction 
between an AI system and the real world: it cannot perceive or experience phenomena.  

The symbolic paradigm is moreover too mechanistic: everything needs to be rigidly programmed 
according to deterministic rules. The system breaks down as soon as some knowledge, some 
specification of the problem or situation, or some part of the program is missing. It cannot easily 
learn new facts on its own or adapt to different circumstances. A true intelligence should be able to 
self-organize, to autonomously develop and grow smarter, in the same way as a human mind does. 

We will now discuss a number of different approaches that have taken this criticism to heart, and 
tried to develop a fundamentally different theoretical framework to address these problems. 
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New Approaches to Cognition 

Connectionism 

Probably the best-known alternatives to symbolic representations of cognitive systems are 
connectionist or “neural” networks. These are directly inspired by the working of the brain, with 
its neurons connected by synapses, rather than by the formalisms of logic and mathematics. They 
are no longer based on independent, discrete units of meaning, but on the connections between 
units. They do not distinguish strict categories, where something is either A or not A: everything is 
fuzzy, fluid and changing. The meaning resides in the connections between otherwise meaningless 
elements. It is “grounded” in input received from perception, and output transmitted to effectors. 
There is no logical formalism or set of fixed deduction rules, but a continuous adaptation of the 
system to experience. As a special bonus, there is no need for detailed programming: the system 
organizes itself.  

Connectionist models were originally proposed by the cyberneticians McCulloch and Pitts in the 
1940s, and then elaborated by the AI researchers Minsky and Papert in the 1960s, until it turned 
out that the existing networks were unable to solve an important class of problems. After this 
obstacle was surmounted with the introduction of the backpropagation algorithm, their final return 
to fashion came with the work of the psychologists Rumelhart and McClelland in the 1980s. 

Components of a Neural Network 

Connectionist representations are based on the concept of a neural network (sometimes called 
“artificial neural network” to avoid confusion between computer simulations and the actual 
neurons that exists in our brain). It consists of the following fundamental building blocks. 

The role of the neurons in the brain is played by nodes or units xi, i = 1, ...N (the index i ranges 
from 1 to the number N, the total number of nodes in the network). Nodes function roughly like 
concepts, i.e. cognitive units. They can be “activated” to a variable degree. (In the brain, activation 
corresponds to the amount of impulses or electrical activity that pass through the neuron). The 
“mental state” of the network can be represented as a (N)-dimensional vector A(xi) of activation 
values over the nodes. 

The activation function takes values between 0 (or sometimes -1) and 1: 

 0 ≤ A(xi) ≤ 1, i= 1, ...N 

This entails a generalization of binary logic: assertions can take on more than two truth values 
(yes-no or 1-0); they can be true to a certain degree. 
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The role of the synapses is played by connections between the units. These connections too exist 
to a certain degree, which is called their strength or weight. Connections function as “associations” 
between the concepts. They can be seen as a generalization of implications in logic or of links in a 
semantic network. The (long-term) memory or knowledge of the system is determined by the 
strength of all the different connections. These connection weights w(xi, xj) = wij, are generally 
represented as a (N×N)-dimensional matrix: 

 -1 ≤ wij ≤ 1, i, j = 1, ...N  

 

Spreading activation 

The most basic process in a neural network is the propagation of activation. Activation is passed 
on from an activated node to all nodes it is connected to. This happens simultaneously or in 
parallel, unlike traditional AI systems where typically only one step or inference is performed at a 
time. The flow of activation passing through a link is proportional to the link strength: stronger 
links transfer more activation. The activation entering a node xj from different previous nodes xi at 
time t is summed to determine the new activation of the node at time t+1:  

A(xj, t+1)= aj (t+1) = ∑
i
wij.ai (t) 

However, usually this sum of incoming activations must surpass a threshold for the node to 
become activated itself. If it remains below the threshold value, the node remains non-active. The 
overall process of spreading activation, moving from neuron to neuron, is the connectionist 
representation of a process of “thought” in the brain. 

Learning  

The second fundamental process in a neural network is learning: the changing of connection 
strengths (and therefore of stored knowledge) as a result of experience. There exist different 
learning algorithms, of which the most basic are: 
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Hebbian learning 

Here a link is strengthened each time the two nodes that it connects are co-activated (i.e. activated 
simultaneously, or, in some cases, the second activated shortly after the first). This is directly 
inspired by the behavior of real synapses. The increase in weight is proportional to the product of 
the two activations: 

wij (t+1) = wij(t) + c.ai(t).aj(t) 

0 < c ≤ 1 plays here the role of a learning parameter. The higher c, the bigger the influence of the 
most recent activation on the weights (and therefore the weaker the influence of earlier rounds of 
learning). In other words, increasing c makes the system learn new experiences more quickly, but 
also forget older experiences more quickly. 

Hebbian learning is a form of unsupervised learning. This means that no one (not even the 
environment) is telling the system what it should learn: it derives its knowledge merely from 
correlations between its experiences. As such, it creates associations between experiences that tend 
to co-occur, like Pavlov’s dog, which learned to associate the sound of a bell with the appearance 
of food. 

Error correction or delta learning 

This is a form of supervised learning, where the experimenter or the environment tells the system 
how it should behave, and the system tries to match that target. The delta rule takes into account 
the difference (error) between target and internal activation. The target activation represents the 
desired output of the neural network. The actual output, i.e. the internally generated activation, is 
merely an attempt to produce the target, and therefore may need to be corrected. This correction 
takes place by adjusting the link weight so that the internal activation it generates comes closer to 
the external activation it received as target. Otherwise, the formula is similar to the one for 
Hebbian learning: 

wij (t+1) = wij(t) + c. ai(t). (aext j(t) - aint j(t))  

A network learning according to the delta rule can be trained to produce a certain type of behavior. 
This happens by repeatedly performing the following training session:  

• subject the input nodes to an example pattern 

• compare the activation of the output nodes to the desired activation 

• correct the link strengths so as to bring the actual output closer to the desired output 
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Correction is a form of reinforcement learning (as used in operant conditioning): connections 
that produced desired output are reinforced or strengthened (rewarded); connections that produce 
undesired output are weakened (punished). 

Feedforward networks 

The simplest type of neural network is a single layer perceptron. The name derives from the idea 
that a perceptron is a very simplified model of the processes that interpret sensory stimuli, i.e. 
perception. It consists of one row or “layer” of input nodes and one row of output nodes. Each 
input node is connected to each output node. The activation is propagated “forward” in a single 
step, from input layer to output layer. The activation of the input layer represents the problem to be 
solved; the activation of the output layer represents the network’s proposed solution. Such a 
network can be used for simple classification tasks, where the input is some pattern (e.g. some 
black or white pixels within a square space), and the output consists of the activation of one or 
more categories that the pattern belongs to (e.g. “line”, “circle”, “square”, etc.). 

To get a multiple layer feedforward network, you can add one or more “hidden” layers of nodes in 
between the input and output layers. These hidden layers have incoming connections from input or 
previous hidden layer nodes. Their outgoing connections go to output or subsequent hidden layer 
nodes. A multilayer network can learn more complex classification and discrimination tasks than a 
single layer one. However, to achieve this it needs a mechanism to propagate corrections of link 
strengths from the output layer (where the target pattern is applied) step by step to earlier layers. 
This mechanism is called backpropagation.  

output 
layer 

input 
layer 
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Example application: a feedforward network can learn to recognize a letter from a pattern of 
activated pixels, e.g. a 4 × 5 rectangle of pixels, some of which are white (not activated), others 
black (activated). These pixels (20 in this example) correspond to the nodes of the input. The 
nodes of the output layers can then represent different possible letters (A, B, C, …) represented by 
the pixel patterns (26 in this example). Initially, the connections in the network will have small 
random values, leading to random activation for the output layer. This output activation can then 
be compared to the desired activation (e.g. when the pattern corresponds to the letter P, the output 
node corresponding to P is fully activated, all others are not activated). This comparison leads to a 
correction of the connection strengths leading to the output nodes. This correction is then 
propagated backwards to the previous layers of connections. After many such training sessions, the 
network will have learned to correctly recognize most letters. Moreover, randomly changing the 
value of one or two pixels is unlikely to change the result, since the activation from these “noise” 
pixels will have little effect on the final output activation. Thus, the network can learn different but 
similar versions of the letter P and classify them all correctly.  

Other applications of feedforward networks include handwriting recognition, voice recognition, 
and “reading aloud” texts (i.e. mapping combinations of letters on to the correct sounds to 
pronounce the words). 

Recurrent networks 

In contrast to forward propagating networks, recurrent networks allow connections “back” to 
nodes (“layers”) activated earlier. Thus, they also implement feedback, not just feedforward.  

A simple recurrent network is similar to a multilayer 
feedforward network except for one complication: the 
state of the hidden layer is copied to a “context layer”. 
This context layer then propagates its activation back 
to the hidden layer, providing it with an additional 
input. This is a simple implementation of working 
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memory: the context layer remembers the state of the network one step earlier. Such simple 
recurrent networks are useful to predict patterns in time, such as sentences, where the preceding 
inputs (previous words) help to guess the next state (following word).  

In a general recurrent network, all nodes are connected to all other nodes, so that we cannot 
distinguish layers, inputs or outputs. This means that activation can propagate backward as well as 
forward. The result or “output” of the network is the activation pattern achieved when activation 
has “settled down” into a stable configuration. General recurrent networks are in principle more 
powerful than the simpler varieties we have discussed before, but therefore also much more 
complex to investigate. 

Advantages and shortcomings of neural networks 

Neural networks have a number of clear benefits compared to symbolic AI programs: 

• They can make “fuzzy”, “intuitive”, non-rational decisions. These are not based on 
explicit logical criteria, but on ever changing experience. 

• They are flexible and fault-tolerant: small variations in input make little or no difference in 
output. 

• They are robust: when the network is damaged by randomly removing nodes or links, it 
continues to function, although it gradually makes more errors as more damage occurs. 
This is called graceful degradation. 

• They are self-organizing: there is no need for a detailed program or plan to tell them what 
to do. They learn the required behavior on their own from the examples provided. 

• They are decentralized: processing happens in parallel, distributed over all the different 
nodes. There is no need for a “central executive” to coordinate the activities. 

On the other hand, neural networks also have disadvantages: 

• They do not provide higher-level reasoning: language, logic, planning... 

• They can only work when they receive input from the designer or trainer. In that sense, 
they are not autonomous. 

• It is difficult to understand for the designer why or how a network comes to its decisions. 
Its “reasoning” is distributed over all its links and nodes. 

• It is difficult for the same network to perform very different functions without the one 
interfering with the other. Learning a new function (e.g. recognizing numbers) generally 
makes the network “forget” how to perform a previous function (e.g. recognizing letters). 
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Constructivism 

The underdetermination of theories by data 

To introduce the constructivist perspective on cognition, let us go back to the problems of 
epistemology and philosophy of science. For a given set of observations or data, there is always an 
infinite number of possible interpretations, theories or models that can explain those data. This is 
because a theory normally represents an infinite number of possible events, of which the observed 
events are only a finite subset. For example, the theory that “the sun always comes up in the 
morning” is based on a finite number of observations, although it makes an infinite number of 
predictions. The non-observed cases are “induced” by postulating general rules covering both 
actual and potential observations.  

For example, through a couple of data 
points in a diagram you could draw a 
straight line, and induce that all 
further observations will lie on that 
line. However, you could also draw an 
infinite variety of the most 
complicated curves passing through 
those same points, and these curves 
would a priori fit the empirical data 

just as well. There is no objective criterion to prefer the “straight” model.  

Therefore, we must first build a theory on our own and then try to fit the perceptions into it. This is 
what Popper meant when he said that science advances by conjectures (proposed new theories) and 
refutations (elimination or falsification of the theories that do not fit the observations). The 
observations or data alone are not sufficient to determine a good theory. 

Not instruction, but construction! 

In the words of Ernst von Glasersfeld, constructivism can be defined in the following way:  

Knowledge is not passively received either through the senses or by way of communication, 
but is actively built up by the cognising subject. 

In other words, the world does not tell us how to interpret it: sensory data are merely bits and 
pieces, without clear organization. To quote another constructivist slogan: Perception is not in-
formation (formation of internal cognitive structures). There also is not a programmer or instructor 
to put all the knowledge into the system. Good teachers do not instruct pupils, i.e. tell them in 
detail what to remember; instead they help the pupils to construct their own understanding of the 
concept.  

y 

 

x 
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The subject is not a recording apparatus, like in the reflection-correspondence view of the mind, 
but an active, autonomous living system. We construct an interpretation ourselves and project it 
onto our perceptions in order to understand the world. The role of knowledge is not to reflect a 
hypothetical objective reality or Ding-an-Sich, but to helps us to “fit in” with our local 
environment as we subjectively experience it (“Umwelt”). Different organisms have different 
Umwelts, and will therefore experience the world in a completely different way. 

Another famous constructivist, the cybernetician Heinz von Foerster, noted that the brain cannot 
absolutely distinguish a perception from a dream or a hallucination. These are all merely patterns 
of neural activation. What we call a perception is merely a particular interpretation of that pattern, 
which attributes its origin to the outside world, even though much of it is internally generated. Let 
us illustrate this process of internal construction using some examples from memory, the cognitive 
process that most resembles an objective registration of perceptions. 

The construction of memory 

Here is a little experiment. A list of some 20 words is read to the subjects, e.g. 

winter, icy, Siberia, warm, cooling, penguin, frozen, flu, chilly, ice, wind, hot, Antarctica, 
wet, fresh, breezy, igloo, cool, snow, Pole, glacier, frost, sleet 

When trying to remember as many words of the list as possible, people will typically remember 
the word “cold”, even though it is not part of the list. This is because “cold” is strongly associated 
to all other words. Therefore, the brain tends to “fill in” or “induce” the missing piece that it 
expects to be there. The conclusion is that memory is not an objective registration of perceptions: 
it is a “reconstruction” on the basis of vague, selective and subjective impressions, to which 
plausible assumptions are added in order to provide continuity and coherence. 

There is a famous psychological experiment to demonstrate the unreliability of memory. People 
are shown a short movie in which a passer-by is attacked by a white man and afterwards helped by 
a black man. When retelling what they saw, many people claim the attacker was black. What 
happens is that they don't clearly remember the attacker, but they remember a black man being 
involved, and they implicitly assume that blacks tend to be criminal. Therefore their mind fills in 
the observation of the skin-color of the attacker, which it didn’t actually register. This experiment 
shows that witness reports, however confident, are not sufficient proof to convict a criminal. 

The psychologist Elizabeth Loftus carried out another surprising experiment to demonstrate the 
creation of false memories. The subjects were told a number of events that supposedly happened 
when they were children, and asked which ones they remembered. Most of the stories were 
collected from their parents or siblings and checked for their accuracy. However, some of the 
stories were invented by the experimenters. These described events that might plausibly have 
happened to the subjects, such as getting lost in a shopping mall, or accidentally spilling a bowl of 
drinks on someone's clothes during a party. When these stories were presented to the subjects as if 
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they were true, a sizeable percentage of the people claimed to effectively remember the events. 
When prodded by the experimenters to remember more accurately, they came up with concrete 
details, such as the people present or the weather that day, which were not part of the original 
story. The more often they were interviewed about these childhood anecdotes, the more their 
“memories” became intense and detailed. 

This and other evidence led Loftus to postulate the existence of a False Memory Syndrome. This 
may explain some dramatic court cases, in which therapists were convicted for making their 
patients falsely believe that they were abused as children. If a psychotherapist is convinced that his 
or her client's emotional problems stem from some repressed childhood experiences, he or she can 
by suggestive questioning make the client construct a number of detailed “remembrances”. 
Without independent evidence, it is virtually impossible to distinguish true experiences from 
falsely remembered ones.  

Example: The existence of the false memory syndrome can be illustrated by the following true 
story. After a series of therapy sessions, a young woman became convinced of having been raped 
several times by her parents, and forced to undergo two abortions using a coat hanger. Her father, a 
clergyman, had to resign from his post when the allegations became public. However, a medical 
examination revealed that she not only never had been pregnant, but in fact still was a virgin. The 
patient sued the therapist for implanting false memories and received a $1 million settlement. For 
another example, I refer to the sensational stories of abuse “remembered” by the so-called X-
witnesses after the Dutroux pedophile scandal in Belgium. 

Coherence epistemology 

The constructivists claim that knowledge is generated largely internally. Even our perceptions 
themselves are shaped by pre-existing knowledge. For example, seeing a planet through a 
telescope assumes belief in the laws of optics that govern the telescope. Hearing someone say 
something assumes the ability to understand spoken language: someone with poor hearing or poor 
language may “hear” something that was not said. Seeing a particular shape, such as a square, 
assumes familiarity with the concept square.  

Therefore, perceptions cannot have priority in establishing the “truthfulness” of beliefs, in 
contradiction to what the empiricists argue. On the other hand, theoretical assumptions just as 
much lack objective foundations, in contrast to what the rationalists would argue. How then can 
we decide which theory is the best? The constructivists solve this problem by using the criterion of 
coherence. The best theory is the one that has most overall support from both other theoretical 
assumptions and from “observations”, i.e. the system of assumptions and perceptions that is 
maximally coherent with each other. Two beliefs (assumptions or observations) are coherent if 
they are not only not inconsistent or contradictory, but also mutually supportive, i.e. if the one 
makes the other one more plausible.  
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The philosopher of science Paul Thagard has implemented this principle in a recurrent 
connectionist model of historical scientific discussions and the resulting revolutions in knowledge. 
Beliefs (assumptions, observations, arguments...) are represented as nodes in a network. Mutually 
inconsistent (contradictory) beliefs are connected by inhibitory links (i.e. links with a negative 
weight): when the activation of the one goes up, the activation of the other is pushed down. 
Mutually supporting beliefs are connected by excitatory links (i.e. with a positive weight): when 
the activation of the one goes up, the activation of the other is pushed up as well. The network is 
then started by giving “accepted” beliefs positive activation. This activation spreads along positive 
and negative links. When equilibrium is reached, the final positive activation pattern determines 
which beliefs have “won the argument”. These usually corresponded to the ones that were 
eventually accepted by scientists. The beliefs that end up with zero or negative activation have 
lost, and are rejected. 

Illustration: the construction game 

The process of construction can be illustrated by an interesting party game. 

A volunteer is sent away to another room while the rest of the group discuss their plan of action. 
When the volunteer comes back, the others tell him that they have invented a “dream” for him. 
This is a story in which the volunteer takes part, and which supposedly takes into account his 
experiences and personality. Being a “dream”, however, it does not need to be based on any real or 
even physically possible events. The game then consists in the volunteer trying to guess the story 
that the others have made up for him. He can ask questions, but the others are only allowed to 
answer “yes” or “no”. For example, he might ask: “Does it happen here?” or “Do I take part as my 
real self?”  

The volunteer is prodded to let his imagination take over, and not try to be too analytic, because 
otherwise he would never be able to guess something as fanciful as a dream. In the beginning, his 
questions will be very vague and general, but as he gets more answers, his picture of the dream 
sequence will get more concrete, and so the questions become more specific. For example, “Does 
the car arrive after the lady has left?” If he cannot think of any more questions to ask, the game is 
over, and the volunteer is asked to tell the dream as he has reconstructed it from the answers he 
got. Depending on the inventiveness of the volunteer, the resulting story can be very involved and 
detailed indeed. However, when he then asks whether his reconstruction of the original story is 
accurate, the group tells him that there never was a story!  

The only thing the others discussed was a rule for answering his questions. The basic rule is very 
simple: every question that ends with a certain letter, say “s”, is answered with “yes”; all others are 
answered with “no”. The only exception to the rule is that answers should be consistent. Thus, if 
the volunteer asks the same question with different words, the answers should remain the same, 
even if the last letters of the questions are different. Since all groups members give the same 
answers (though they sometimes may get slightly confused because they heard or understood the 



- 45 - 

question differently), and since the different answers confirm each other, the victim gets the 
impression that they effectively have agreed on a coherent story. Each further answer gives him 
one more bit of information, which he uses to further develop the story he has in mind. Yet, the 
end result, however coherent, detailed and involved, is purely a creation of his imagination, with 
no counterpart in any reality except his own mind.  

Although this example is rather extreme, it helps us to understand the process of mental 
construction of ideas, beliefs and theories. Observation of the outside world does provide us with 
information, in the form of “bits”, which helps us to decide whether we should accept or reject a 
certain hypothesis. But we must find the meaning of these bits ourselves, by fitting them into our 
own conceptual designs.  

Social constructivism 

In addition to coherence, there is another criterion for accepting a belief as “true”: consensus. The 
more people confirm an observation, interpretation or belief, the more we take it seriously. For 
example, one person seeing a UFO is much less credible than twenty people seeing it. However, 
this criterion is problematic when people influence each other. In that case, they can all come to 
believe the same, even though only one (or none) actually “perceived” it. 

In practice, most of our beliefs/knowledge come from others. These include religion, language, 
culture, worldview, morals, and common sense. In most cases, it is difficult to determine what is 
the precise origin of these beliefs. Such a belief has been transmitted from person to person, each 
time accumulating some small changes. Through these changes, the belief adapts so as to be 
maximally coherent with other beliefs people already have. In the end, a complex system of belief 
may be constructed by the group, without any individual having control over it. Since there is no 
objective, outside criterion to which beliefs must adapt, separate groups will typically construct 
different and independent belief systems. For example, Western astrology is completely different 
in its assumptions and predictions from Chinese astrology.  

These shared beliefs determine what we assume to be true or real: this is called the social 
construction of reality. Since perceptions are affected by ideas and beliefs, the way we perceive 
reality will depend on our cultural and social background. For example, when Galileo tried to 
convince the church authorities of his observation that the planet Jupiter has moons, they simply 
refused to look in his telescope, since they anyway “knew” there were no moons, and had no trust 
in this bizarre instrument. As another example, before Harvey's theory that the heart works like a 
pump, nobody appears to have noticed that the heart beats (or at least no mention of it is made in 
the literature). It seems that we first needed a theory of why the heart should beat before we could 
truly observe that it beats.  

The conclusion is that different cultures or groups live in different “realities”, and that we have no 
objective criterion to say which one is right and which one is wrong. The social construction of 
reality is a basic thesis in “postmodern” social science. It is used to argue that Western science or 
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philosophy is in no way superior to the one of other, supposedly more “primitive” cultures. 
However, postmodernism has recently come under more and more attack, and seems no longer to 
be so fashionable as it used to be a decade ago.  

Shortcomings 

 Constructivism—and particularly postmodernism or social constructivism—tends to 
overemphasize the relativity of knowledge. There is an objective difference between 
astrology and astronomy: the one makes reliable predictions, the other does not.  

 Constructivism does not sufficiently distinguish between external and internal sources of 
information. In practice, most of the time we can distinguish between perception and 
imagination.  

 Constructivism lacks formal models of knowledge. It also does not make clear how 
precisely knowledge is constructed. 

 

Situated and Embodied Cognition  

The Brain in a Vat problem 

Most of traditional cognitive science (and part of constructivism) tends to see the mind as 
dissociated from the outside world. At best, it is merely passively observing what happens outside. 
For example, AI reduces cognition to the logical manipulation of abstract symbols. Even 
connectionism tends to reduce the influence of the outside world to a simple set of inputs that the 
cognitive system itself has no control over. This attitude is a remainder of dualism: the mind is 
seen as something intrinsically different and separate from matter. Even when modern science 
admits that the mind cannot exist independently 
of the matter in the brain, the assumption is that 
the brain alone is sufficient to produce intelligent 
behavior. 

This leads us to envisage a theoretical 
disembodied intelligence as a “brain in a vat”: a 
brain artificially kept alive by providing it with 
the right nutrients, but with no body or sensory 
organs attached to it. Critics of traditional 
cognitive science say that it tries to build the 
equivalent of a brain in a vat. However, they 
claim that such a brain would not be able to 
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exhibit intelligence, because intelligence evolved specifically in order to allow us to interact more 
efficiently with the world, and because all the knowledge we have is derived from that interaction. 
The critiques on disembodied cognition have been formulated in different, but related ways, which 
we will now briefly review. 

Embodiment 

The main argument of the proponents of embodied cognition is that cognitive systems need to 
have the equivalent of a body through which they can interact with their environment. This 
includes at least: 

 sensors through which information about a real environment (not controlled by the 
programmer or experimenter) can enter the system. Examples are eyes and ears. These are 
also called afferent channels, as they bring data into the system. 

 effectors or actuators (muscles, motor system) through which the cognitive system can act 
upon the outside world. Examples are hands and vocal chords. These are also called 
efferent channels, since they bring data out of the system. 

 a feedback loop connecting the two, so that the effects of actions can be perceived, and 
the system can establish a connection between the two. For example, a child trying to 
speak must hear its own voice in order to learn to articulate. That is why deaf children who 
have not received specific training also tend to be dumb. 

Additional body elements that may be important include the glands that produce hormones, which 
affect emotion and mental functioning, and internal organs that sense the internal state (e.g. hunger 
is triggered by the emptiness of the stomach and a low glucose level in the blood). Since the body 
is an imperfect system, subject to various physical constraints (e.g. weakness, inaccurate 
perception, inertia, cold, hunger, ...) the mind cannot afford to be busy only with purely rational, 
abstract reasoning: it must constantly adapt to the practical situation and correct for unforeseen 
problems.  

Situatedness 

The closely related philosophy of situated cognition focuses on the fact that in order for us to 
understand its functioning a cognitive system must be situated in a realistically complex 
environment, not in an idealized world of logic and abstraction, a psychological laboratory, or a 
simulated “toy world”. The real world is indeed much more variable, ambiguous and unpredictable 
than the simplified “environments” that have been used in cognitive science. Yet, a truly intelligent 
system by definition is able to cope with these complexities. Moreover, part of that intelligence 
directly derives from the environment by way of learning from it or interacting with it. 

One of the biggest problems encountered by traditional cognitive science is how to represent the 
world in a sufficiently detailed way (the knowledge acquisition and representation problem), and 
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how to make inferences in such a complex model (the frame problem). Yet, there is no need to 
make detailed representations when you can directly access the world itself. This is summarized by 
the slogan: The world is its own best model. 

For example, why calculate the precise force and the angle with which you would have to push a 
block in order to get it out of the way (as if often done in “blocks worlds” models of robotic 
action), if you can just try it out and adjust your movement according to the feedback you get 
through your senses? Why plan ahead all the different steps of a problem-solution, if you can just 
perform some actions and see whether they bring you closer to the solution? 

Another implication of situatedness concerns the way we learn. The concepts we learn always 
appear in a concrete context: a specific situation to which the concept applies. It is impossible to 
fully specify this context by means of a formal definition stating the necessary and sufficient 
conditions for a phenomenon to belong to that category. For example, the concept “he is an 
animal” cannot be explained by “an animal is a living organism that can autonomously move”. 
Yet, the expression is easily grasped when used in the right context (e.g. after a night of wild sex). 
Practical experience shows that trying to teach concepts via dictionary definitions is very 
inefficient. Students make mistakes, such as “my parents and I correlate well, since most of the 
time we are present together”. Teaching by using the concepts in appropriate contexts leads to 
much quicker understanding and remembering. 

Conceptual metaphors 

If the foundation of cognition is concrete interaction with the world, then how can we learn to 
reason abstractly? According to the cognitive linguist George Lakoff (in collaboration with Mark 
Johnson), we do this by using conceptual metaphors: analogies between the abstract concept, and 
a more concrete, “embodied” concept that we intuitively understand because of our experience in 
interacting with the world. This is best illustrated with some examples: 

Desire Is Hunger: the abstract concept of “desire” is made more intuitive by comparing it to the 
bodily sensation of hunger. This metaphor is found in various English expressions: 

- He is sex-starved 

- She thirsts for recognition 

- Sexual appetite 

- He hungers for her touch. 

Existence Is A Location (here): the very abstract notion that something exists is “embodied” by 
comparing it to the notion that something is present in the vicinity. Again, Lakoff has collected 
plenty of English expressions that illustrate this usage: 

- It came into existence 

- The baby is due any day 
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- The baby is a new arrival. 

- No answers were forth-coming. 

 Some other conceptual metaphors are: Life is a Journey, Change Is Motion, or Change Is Replacement. 

In further work in collaboration with Nunez, Lakoff has applied his theory even to mathematical 
concepts. For example, the mathematical notions of element, vector space, operator, 
transformation and set (collection) all refer to physical objects, the space in which they move, or 
the way we manipulate them. Similarly, the basic concepts of logic can be understood 
metaphorically: proposition = expression = spoken sentence, deduction = demonstration = pointing 
out. The latter can be illustrated through an expression such as “let me walk you through the 
different steps of the proof”. 

Enaction  

Enactive cognitive science, as proposed by Varela, Thompson & Rosch, is again a closely related 
conception of cognition: thought or knowledge only becomes meaningful when it is implemented, 
“acted out”, or enacted via interaction with the environment. The cognitive system is “structurally 
coupled” to the environment. This means that changes in the environment systematically affect the 
system, and vice-versa. Therefore, mind and world, or system and environment, cannot really be 
separated. Out of this interaction, reality is constructed. This perspective can be situated in 
between objectivism (knowledge as reflection of outside world) and subjectivism (knowledge as 
internal construction).  

As suggested by the name, this approach emphasizes the role of action. Even perception can be 
seen as perceptually guided action. A classic illustration is found in saccades (quick eye 
movements): the eye is constantly moving its gaze so as to explore the most interesting parts of the 
scene. Out of the relationships between the different aspects thus sensed, the brain constructs a 
complex picture of the surroundings. More generally, cognitive structures emerge from recurrent 
sensori-motor patterns, i.e. the correlations between perceptions and actions, which enable action 
to be perceptually guided. 

Implementing Situated Cognition 

Autonomous robots 

According to the situated and embodied perspective, symbol-based computer simulation is not a 
good way to understand cognition, since it lacks a realistic mind-environment interaction. Instead, 
AI researchers should strive to build autonomous robots that can independently interact with the 
real world through sensors and effectors.  
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Such robots should not have a detailed program of what to do, but only a broad goal. A typical 
example of such a robot will have as its goal to find an electric contact to plug into when its battery 
runs low, and explore the room otherwise. Rather than planning ahead, the robot should solve any 
problems as they arise. For example, it should find a way around when there is an obstacle in front 
of the contact. Such robots should start with very simple, yet vital, behaviors, e.g. move around 
without bumping into walls and furniture (this is called “wall following behavior”). The 
underlying philosophy is that we should first learn to simulate the behavior of insects, not the 
logical reasoning of humans! For example, researchers have built robots with six legs that learn to 
walk around efficiently the way a cockroach would walk. 

Rodney Brooks, one of the founders of this approach, has developed a so-called subsumption 
architecture to control autonomous robots. The principle is that goal-seeking behavior is 
implemented in a hierarchy of levels. At the lowest level, there is direct sensory-motor interaction. 
For example, when the robot detects an obstacle (perception via the senses), it immediately stops 
moving (control of movement). This results in quick reactions and the avoidance of basic 
problems. The higher levels control the lower levels. For example, after the movement has 
stopped, the higher control may direct the robot to resume movement in the general direction of 
the electrical contact, but with a deviation so as to avoid the obstacle. Such a subsumption 
architecture allows more complex planning without getting stuck in immediate but unexpected 
problems, as would happen with a robot using traditional AI programming. 

Software agents 

In addition to building robots (hardware agents), the embodied approach to AI also uses 
autonomous software agents. Since robots are very dependent on (expensive and unreliable) 
hardware, it may be more fruitful to simulate their general behavior in software. However, such 
simulations should be more realistic than the older “Blocks worlds”. This requires the following 
steps. First, define a virtual environment obeying (realistic) physical constraints. Then define 
agents equipped with sensors to perceive (imperfectly) that environment, effectors (typically 
ability to move) to act upon that environment, and an autonomous goal (e.g. avoid dangers and 
gather enough virtual food) to steer their actions. If you add the possibility for unsuccessful agents 
(that fail to reach their goals) of “dying”, and for successful ones of “reproducing” with variations, 
then you have the basic paradigm for Artificial Life, a domain originally inspired by the computer 
simulations of AI but otherwise quite different in its philosophy.  

In such a virtual environment, researchers can test out different cognitive architectures for the 
agent to see which ones work best. A nice illustration of such a simulation was performed by my 
former PhD student Carlos Gershenson [2004]. He built a “virtual laboratory” that enabled him to 
compare the behavior of different agents in the same virtual environment. These agents were 
programmed according to different cognitive paradigms, including connectionist, symbolic, rule-
based, and Braitenberg vehicles (see later). Somewhat surprisingly, the different agents were about 
equally successful overall, although some were better in certain aspects… 
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Dynamical systems  

Dynamical systems, as reviewed by Port & Van Gelder [1995], is a new modeling paradigm for 
cognitive processes that goes beyond the reduction of cognition to symbol manipulations. This 
perspective notes that the environment, the cognitive system, and their interaction each can be seen 
as physical processes in time. Mathematically, such processes are modeled as dynamical systems.  

A dynamical system is determined by a set of quantitative variables sa, sb, sc, …, together 
determining a state s = (sa, sb, sc, …), that change simultaneously and interdependently over time. 
The state of the system follows a trajectory s(t) through the state space under the influence of some 
abstract “force” or dynamics (which is typically described by a differential equation). Such 
processes can come to equilibrium in an attractor state or region, or periodically cycle around it, or 
even exhibit chaotic behavior.  

The basic implication is that we should take (continuous) time into account while modelling 
cognitive processes. This approach is in principle more general than older models of cognition:  

• logical deduction takes place outside of time: all axioms and theorems are supposed to be 
simultaneously true. 

• computation, which is the basis of AI, takes place in discrete time steps, one for each basic 
operation. 

• spreading activation in a feedforward net takes place in only a few time steps (one step to 
go from one layer to the next). When the output layer is reached, the process stops. 

It must be noted, though, that the reason older approaches approximate time by discrete steps is 
simply because continuous models, such as those used in differential equations, are much more 
difficult to deal with, and therefore the dynamical systems approach can as yet only handle 
extremely simple processes with just a few variables. 

Distributed cognition and the extended mind  

The extended mind hypothesis, proposed by the philosopher Andy Clark [1997; Clark & 
Chalmers, 1998], notes that the mind not only interacts with the environment: it actively uses the 
environment to perform certain cognitive activities. It thus extends outside of the brain and into the 
physical environment. This philosophical position is sometimes called “active externalism”: 
cognitive elements (symbols, concepts) are not only defined by their relation to the outside 
phenomena they represent (a position known in philosophy as externalism), they also take part in 
this outside world. 

There are good practical reasons why the mind should use the environment. We have already noted 
that the mind is not so good at accurately storing or mechanically manipulating information, 
because of the “magical number” restriction on working memory. Material systems in the 
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environment can be more reliable for this. This can be illustrated by a variety of examples where 
people use material tools to facilitate cognitive tasks: 

- writing in a notebook to remember agenda items and telephone numbers 

- counting sheep by adding pebbles to a bag 

- putting up signs in the neighborhood to help people find locations (e.g. the bathroom, a city) 

- using fingers, an abacus or a computer to make calculations 

- using a microscope to perceive tiny objects 

The implication is that we cannot separate mind and world, since the outside world itself performs 
cognitive functions, such as memorizing and information processing. In fact, a number of complex 
cognitive processes such as computation or mathematical reasoning may actually be impossible 
without support from external tools, such as pen and paper. It seems extremely unlikely that 
advanced scientific theories, such as quantum mechanics or molecular biology, could ever have 
been developed without these cognitive tools. Moreover, in our everyday life we are constantly 
relying on written notes, signs, maps, etc. In that sense, our minds truly extend into the 
environment. 

Cognition can extend not only across material objects, but across social organizations. This is the 
perspective of distributed cognition, as investigated by the ethnographer Hutchins [1995]. A 
complex organization, such as a Navy ship, consists of many individuals, communicating with 
each other using various channels, while collecting and processing information using tools such as 
compasses, notebooks, and nautical instruments. Together, they solve complex problems, such as 
controlling the ship’s course while maneuvering into a port. The information about the ship’s 
precise position, speed, direction, as well as information about the port layout, position of other 
ships, wind direction, etc. is collected and processed by all individuals and instruments together, 
working as a single cognitive system that is distributed over many interacting components. 

A similar perspective inspires distributed artificial intelligence. Here, the cognitive system is 
formed by different software agents or robots, each specialized in a particular aspect of the 
problem. By communicating their results and thus collaborating, they may together solve problems 
that are too complex for any agent individually.  
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The Systems View of Cognition 

Summary of previous developments 

When we compare the different “schools” or paradigms in cognitive science, we can situate them 
on two basic dimensions: 

(1) Internal vs. external: More rationalist approaches (e.g. Plato, constructivism, symbolic AI) 
emphasize that knowledge is primarily generated internally, by the mind itself, independently 
of the environment. More empiricist approaches (e.g. logical empiricism, behaviorism, 
situated and embodied CS) insist that knowledge originates externally: it is produced by 
information coming via perception from the environment. In between, we find approaches that 
accord similar importance to internal and external influences (e.g. enactive CS, connectionism, 
cognitive psychology). 

(2) Static vs. dynamic: Historically, the first approaches tended to see cognition as apprehension 
of absolute, objective truths. Later, the emphasis is on knowledge as something that is 
constantly being created and evolving, without ever approaching a time-independent “truth”.  
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In the longer term, the trend is towards increasingly dynamic views that emphasize relations 
between inside and outside. These are what we might call “interactivist” approaches: enactive 
cognitive science, connectionism. This is clearly seen in the picture above where the more recent 
approaches tend to be situated more towards the bottom and center of the scheme. In addition there 
is a trend to pay more attention to the internal relations between the cognitive units, rather than to 
the units on their own, e.g. connectionism, semantic networks. All in all, models of the mind have 
become increasingly complex and dynamic, shifting from a reduction to independent parts (the 
soul, ideas, observations, symbols, …) to a focus on the interactions that tie the parts into a whole 
(connections, feedbacks, distribution, …). 

The need for integration 

Different paradigms are good in modeling different aspects of cognition, for example AI for 
modeling deduction, connectionism for learning, and embodied CS for autonomy. Yet, they each 
have their own shortcomings. Unfortunately, there is no obvious way to combine the benefits in a 
single theory, since the paradigms are quite opposed in their philosophies and basic assumptions, 
e.g. symbolic vs. subsymbolic, or rationalist vs. embodied.  

In other sciences, the most successful attempt at integration came from general systems theory, 
which is more recently being revived under the label of complex adaptive systems or complex 
systems science. Such systems thinking moreover has the benefit of focusing intrinsically on 
interactions. A systems approach to the problems of mind can be found in cybernetics. This is a 
paradigm slightly older than cognitive science, which was started in the 1940s. Cybernetics had 
great ambitions for understanding intelligent behavior, and some immediate successes in both 
theory (e.g. W. R. Ashby’s 1952 book “Design for a brain”, or G. Bateson’s collection of essays 
“Steps towards an ecology of mind”), and practice (e.g. the neural networks of McCulloch and 
Pitts and the autonomous “tortoise” robots built by W. Grey Walter in the 1940s).  

However, this approach was eclipsed by the popularity of symbolic AI in the 1960s and 1970s. 
The reason was that the designs of cybernetics were analog, and therefore clumsy and difficult to 
build, whereas the AI approach was digital, and therefore easy to implement with the new 
computer technology. Moreover, cybernetics focused on apparently low-level functions, such as 
movement and adaptation, while AI immediately tried to tackle high-level cognitive tasks, such as 
proving theorems or playing chess. Yet, most of the basic concepts of cybernetics, such as 
feedback, autonomy and self-organization, have now come back as part of the new approaches to 
cognition, such as constructivism, connectionism, situated and embodied CS and dynamical 
systems. In hindsight, it seems that cybernetics had gotten more things right than AI. Still, it needs 
to be updated with more recent ideas that have proven their utility. That is what we will try to do in 
the remainder of this text. 
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Basic concepts of systems theory 

The systems philosophy can be summarized by the well-known saying that “the whole is more 
than the sum of the parts”. A whole possesses emergent properties, which are not properties of its 
parts. For example, an organism has the property of being alive; the same cannot be said of the 
atoms and molecules that constitute it; a song has the properties of melody, harmony and rhythm, 
unlike the notes out of which it is composed. A system can be defined as a number of parts 
connected together by relations or interactions. It are these connections that turn a collection of 
parts into a whole.  

Systems theory thus makes abstraction of the substrate or material out of which a system is made: 
what counts are the relations between the elements, not the elements themselves. For example, 
transistors in a computer may play the same role as the neurons in the brain, as long as their pattern 
of interconnections is similar enough. In that way, systems theory transcends the matter-mind 
dichotomy that gave rise to dualism. Neither matter nor mind are a priori categories; the essence is 
organization, i.e. the pattern of connections and the information that is passed on along them, 
which give the system its coherence. 

The most basic distinction in systems theory is the one that separates a system from its 
environment. The environment is defined as everything that is not part of the system, but that 
directly or indirectly interacts with the system. This distinction is represented explicitly by the 
system boundary, which designates the separation between the inside and the outside of the 
system. It is important to note that the distinction system-environment is always to some degree 
subjective: we can draw the boundary differently, including or excluding different phenomena, 
depending on our goals or focus of interest.  

Example: clothes, hair, glasses, symbiotic bacteria... may or may not be included in the system 
“person”. Alumni, part-time students, visitors, externally employed cleaners may or may not be 
included in the system “university”. 

 

System and environment by definition interact: they exchange matter, energy and/or information, 
and thus mutually affect each other. This leads us to define two other basic systems concepts: 

• input: what enters the system from the environment 

• output: what leaves the system to end up in the environment 

System 

 output 
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Two systems A and B are coupled if they share some of their inputs and/or outputs. There are 
three basic types of system couplings: 

• sequential or serial: output of A = input of B 

• parallel: input of A = input of B, output of A = output of B 

• circular: input of A = output of B, output of A = input of B 

 

sequential parallel circular

A B

AA

B B

 

  

A number of coupled systems together can form a new, larger system: a supersystem. The original 
systems are now the subsystems of the new, encompassing system. Generally, each system 
contains a number of subsystems, and is contained in one or more supersystems. Subsystems and 
supersystems form a hierarchy. 

Example: atoms → molecules → organelles → cells → organs → organisms → societies → Earth 
→ solar system → galaxy ... 

Control systems 

Living systems 

Organisms require a constant input of matter and energy (food, resources) in order to maintain 
their state of being alive. This input is necessary to provide energy for metabolism and movement, 
to rebuild worn tissues, such as hairs, skin and red blood cells, to grow, and to reproduce the 
system. Living systems are intrinsically goal-directed: they try to maintain and (re)produce 
themselves, in spite of perturbations from the environment. Their implicit goal or value is fitness: 
survival, growth and reproduction. This goal has been built into them by evolution via natural 
selection: organisms that were not good at achieving fitness have lost the competition with those 
that were better, and have thus been eliminated. This is the evolutionary principle of the “survival 
of the fittest”. 
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Agents 

Definition: an agent is a goal-directed system that tries to achieve its goals by acting on its 
environment.  

Agents are typically organisms, such as animals or people. However, they can also be artificial 
systems, such as robots or software agents, with preprogrammed goals. They can even be 
organizations or other social systems, such as a firm, a football team, or a country, that consist of 
coordinated individual agents with a shared set of goals (e.g. making profit for a firm, winning for 
a football team). 

Control 

Cybernetics has shown how goal-directedness is achieved via control. 

Definition: control is the successful compensation of deviations from the goal by appropriate 
counteractions.  

Example: hunger = deviation from state of sufficient energy; counteraction = find and eat food. 
The agent is in control if it manages to find sufficient food not to stay hungry. 

A deviation thus triggers an action, which produces a reduced deviation, which in turn produces a 
further action, and so on, until all deviations have been eliminated. Thus, control is characterized 
by a negative feedback loop. A feedback loop is a circular coupling of a system with itself via the 
environment. The feedback is called negative when it reduces deviations, positive when it 
increases deviations. 

perturbations

action

goal  

AGENT

ENVIRONMENT

perception

 

The feedback loop characterizing a control system or agent has the following basic components 
(see picture): 
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• perception: information entering the agent from the environment, representing the situation as 
experienced by the agent 

• goal: internal representation of the ideal or preferred situation for the agent 

• action: the agent affects the environment in order to bring the perception closer to the goal 

• diversions: changes in the environment that affect the situation independently of the agent (i.e. 
that are not under control of the agent), making it deviate from its present course of action. In 
cybernetics, these unexpected changes are traditionally called disturbances or perturbations. 
However, their effect can be negative, like in the case of the appearance of a storm or a 
predator, but also positive, like in the case of the appearance of food or a tool. Instead of 
disturbances, such unexpected opportunities are better called affordances, i.e. they afford the 
agent an additional possibility to achieve its goals. For example, the presence of an apple 
affords you the opportunity to eat. Disturbances and affordances together may be called 
“diversions”, since they redirect or divert the agent’s activity, either in a positive or in a 
negative way. 

Let us delve a little deeper into the different processes that make up the control loop. 

Cognitive aspects of control 

For an agent, a problem can be defined most generally as a difference (deviation) between the 
experienced situation (perception) and the desired situation (goal). If there would be no difference, 
the agent would be perfectly satisfied and would have no reason to act. A problem in this sense is 
not necessarily negative or unpleasant: it is sufficient that the agent can conceive of some way to 
improve its situation and is motivated to seek such improvement. For example, if I feel like 
drawing, then my “problem” is defined as the difference between an empty page and a page with 
an esthetically pleasing sketch on it. A problem should also not be seen as something intellectual: 
if the cup I am holding tilts a little bit too much to the left, so that coffee may leak out, this defines 
a problem which I must resolve by restoring the balance.  

The agent's task is to solve the problem, i.e. to determine and perform one or more actions that 
together eliminate (or minimize) that difference. Achieving this requires different cognitive 
functions: 

• perception: the agent needs to sense as precisely as possible what deviations there may 
exist, and in how far previous actions have affected these. 

• representation: perception produces an internal representation of the outside situation 
(e.g. a pattern of activation across neurons). Note that this representation is not an 
objective reflection of external reality, but a subjective experience of how the agent’s 
personal situation may deviate from the preferred or desired one. There is also no reason to 
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assume that a representation consists of discrete units (symbols) that represent separate 
objects or aspects of the situation. 

• information processing: the agent needs to process or interpret the information in the 
representation, and in particular determine precisely how it differs (or may start to differ) 
from the goals, and which actions could be used to reduce those differences. 

• decision-making: the agent needs to select the best action to perform. In general, only one 
action can be performed at a time; if several actions seem appropriate, the best one needs 
to be chosen. 

• knowledge: to make adequate decisions, the agent has to know which action can be used 
to reduce which deviation; otherwise the agent would have to try out an action at random, 
with little chance of success, and thus a high chance of losing the competition with more 
knowledgeable agents. 

• intelligence: if problem is complex—so that solving it requires more than one 
interpretation and/or action—the agent may need to look ahead at likely future situations 
by making inferences, explore their consequences, and develop a plan to deal with them, 
i.e. design a sequence of well-chosen, coordinated actions. 

Physical aspects of control 

Let us follow through the control process outside of the agent, noting how the environment too 
participates in solving (or worsening) the problem. 

• action: the agent should be able to perform a sufficiently broad repertoire of actions to 
affect the environment in the needed way: the more variety there is in the perturbations, 
the more variety there must be in the actions to deal with them (Ashby’s Law of Requisite 
Variety); this requires sufficiently powerful and flexible effectors. 

• affected variables: only certain aspects of the environment are affected by the agent’s 
actions: for example, the agent cannot change the weather, but may be able to find or make 
a shelter against the rain.  

• dynamics: changes in the environment, whether produced by the agent or by diversions 
(i.e. all events not produced by the agent), generally lead to further changes, according to 
the causal laws or dynamics governing the environment. For example, a stone pushed over 
a cliff by the agent will fall down to the bottom, where it may break into pieces. This 
dynamics may help or hinder the agent in achieving its goals. It may even perform some of 
the required information processing, like when the agent adds stones together to perform 
calculations (calculus = Latin for “small stone”) 

• sensed variables: the agent cannot sense all changes in the environment, whether caused 
by its own actions, diversions or dynamics; the variables it can perceive should ideally 
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give as much information as possible relevant for reaching the goal; irrelevant variables 
are better ignored since they merely burden the cognitive system 

perception action

goal

representation decision
information processing

disturbances

affected  
variables

observed 
variables

dynamics

SYSTEM
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When we put the different internal and external components of the control process together, we 
end up with the following more detailed scheme.  

This scheme is a feedback cycle with two inputs: the goal, which stands for the preferred values of 
the system's essential variables, and the diversions, which stand for all the processes in the 
environment that the system does not have under control but that can affect these variables. The 
system starts by observing or sensing the variables that it wishes to control because they affect its 
preferred state. This step of perception creates an internal representation of the outside situation. 
The information in this representation then must be processed in order to determine: 1) in what 
way it may affect the goal; and 2) what is the best reaction to safeguard that goal.  

Based on this interpretation, the system then decides on an appropriate action. This action affects 
some part of the environment, which in turn affects other parts of the environment through the 
dynamics of that environment. These dynamics are influenced by the set of unknown variables that 
we have called the diversions. This dynamical interaction affects among others the variables that 
the system keeps under observation. The change in these variables is again perceived by the 
system, and this again triggers interpretation, decision and action, thus closing the control loop.  

Uncertainty reduction 

In general, the agent cannot be certain which action is appropriate. This is because the 
environment is infinitely complex: every phenomenon in the universe has potentially some 
influence on what can happen here and now. Moreover, every situation is unique: even seemingly 
identical situations can produce different outcomes, as illustrated by the phenomena of chaos and 
quantum indeterminacy. Although the agent may not be able to sense and distinguish all these 

diversions 
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unique situations, even with relatively simple sensors the number of possible combinations of 
sensed values is astronomical. 

Example: consider a primitive eye with 100 pixels that can each sense only black or white (2 
possibilities). Such an eye can in principle still distinguish 2100 possible combinations of the values 
for these pixels in a single view. Consider now a sequence of 10 views. This produces (2100)10 = 
21000 which is about 10300 possible combinations (a 1 followed by 300 zeros!) 

We may conclude that the agent cannot have perfect knowledge of what to do for each possible 
situation. This implies that some of the actions the agent performs will not be optimal, or not even 
adequate. However, this is not grave because errors can generally be corrected by subsequent 
actions. The only real requirement is that actions must be more likely to improve than to worsen 
the situation. If that condition is met, a long enough sequence of actions will eventually bring the 
agent close to its goal. 

Given that the agent cannot act with certainty, it will need to make “informed guesses” about what 
action to take. This means that it should maximally reduce the uncertainty, taking into account any 
information it can get. To do that, the agent must have good heuristics to simplify the situation: 
learning to ignore the less relevant aspects; learning to distinguish the most relevant aspects; 
selecting the actions most likely to have positive effects. Moreover, the agent needs to be ready to 
immediately correct the undesirable effects of any action. This requires sensitivity to small 
changes, ability for quick action, and immediate sensory-motor feedback. 

Vicarious selectors 

From an evolutionary point of view, agents have been selected to survive. This means that agents 
with poor choice of actions have been eliminated by natural selection. The surviving agents must 
have evolved some mechanism(s) to choose adequate actions. These internal mechanisms may be 
called “vicarious selectors”. (This term was invented by Donald T. Campbell, the founder of 
evolutionary epistemology.) They select appropriate actions from the myriad possibilities. In that 
way, they “stand in” for, substitute, or represent natural selection by the environment. (Note the 
meaning of the term “vicar”: delegate, representative, substitute). 

If the vicarious selector had not eliminated the wrong actions, natural selection would have 
eliminated the agent itself. For example, we have an instinct for spitting out berries that taste bitter: 
the berries may be poisonous, and not spitting them out might have led to death. There also is an 
instinct for pulling back from a ravine or precipice: not pulling back may have resulted in a lethal 
fall. 

There exist many different types of vicarious selectors at different levels of complexity. These 
include “instinctive” knowledge inherent in the genes, perceptions, which “stand in” for the 
external situation, knowledge learned from experience, and information received via 
communication from others. 
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Reactive Agents 

Condition-action rules 

The simplest types of agents are called reactive. They directly or immediately (re)act on the 
phenomena they perceive. This means that they have no internal storage (memory) for 
information, and they do not “process” information. They also do not anticipate or reflect about 
what might happen. They simply map perceived situations to actions appropriate to that situation. 
Thus, they follow the stimulus → response scheme. They respond automatically, by “reflex”, to a 
sensed condition or stimulus, and that in always the same manner. 

Their knowledge is in the form of condition-action rules. These have the following form: 

IF a certain condition (perceived phenomenon) is present 

THEN perform a certain action, appropriate to that condition 

We will from now on represent such a rule using the following short notation:  

 condition → action 

Examples: banana → eat, tired → sleep, tiger → run away, lever → press 

Such a reflex-like way of acting can be implemented by a direct connection transmitting activation 
from a sensor (condition perceiver) to an effector (action performer).  

For the agent to be fit or “in control”, its actions should be such that they bring the situation 
(generally) closer to the goal. This implies a negative feedback relation that reduces deviations 
from the goal. 

Example: consider a simple sea-living creature that needs to stay in the right temperature zone to 
survive. Its required behavior can be implemented with 3 condition-action rules: 

 too cold → go up 
(this could be implemented by a cold sensor that activates an effector for moving 
upward) 

 too hot → go down 

 just right → don't move  

This last rule could possibly be replaced by: just right → go up or just right → go down. The small 
error that this produces will immediately be corrected by negative feedback, so that the agent will 
oscillate a little around the right temperature zone. 
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Evolution of reactive knowledge 

Given the existence of perceptions P = {p} and actions A = {a}, knowledge is in the mapping from 
the first set to the second set: P → A: p → a 

There exist |P| × |A| possible condition-actions rules (where |P| stands for the number of elements 
in the set P) 

Example: for the sea-living creature, there are 3 × 3 = 9 possible rules. Some of these rules will 
endanger survival, e.g. too hot → go up, or too cold → don't move. If by mutation such a rule 
appears, the creature with this mutated rule will be eliminated by natural selection. Thus, bad rules 
are eliminated together with their carrier. Other rules improve survival, e.g. too hot → go down. 
These will be favored by natural selection: creatures that exhibit them survive better than those 
that do not. Some rules, while not being dangerous, have no immediate value, e.g. just right → go 
up. These will be eventually replaced by better rules, such as just right → don't move.  

More generally, variation and selection will not only affect the connections between conditions 
and actions, but the conditions and actions themselves. Perceivable conditions vary when new 
sensors appear. For example, a light sensor that was initially sensitive to red light may mutate so 
that it becomes sensitive primarily to green light. Or a receptor in a cell for a particular type of 
molecule (e.g. hormonal signals) may change shape so that it recognizes a different type of 
molecule. Possibilities for actions evolve when new or variant effectors appear, such as new 
muscles, or genes producing a different type of enzyme. These sensors and effectors will be 
selected if they offer better possibilities for interaction with the environment, i.e. if they make it 
easier for the system to reach its goals because it can intervene more directly in the different 
diversions. 

In this way, variation and selection of conditions, actions, and rules will eventually produce a well-
adapted system of rules, or what we may call adequate knowledge. Note that the environment does 
not instruct the agent about which rules are correct: it merely leads to the elimination of incorrect 
rules. The agent has to find out for itself (“construct”) the correct rules. 

Braitenberg vehicles 

It is possible to design very simple robot-like agents to illustrate the capabilities of condition-
action rules. For this, we can find inspiration in the thought experiments proposed by the 
cyberneticist Valentino Braitenberg in his book “Vehicles”. The agents (vehicles) conceived by 
Braitenberg have primitive light sensors and wheels (each driven by its own motor) as effectors. A 
sensor is directly connected to an effector, so that a sensed signal immediately produces a 
movement of the wheel. Depending on how sensors and wheels are connected, the vehicle exhibits 
different, goal-oriented behaviors. This means that it appears to strive to achieve certain situations 
and to avoid others, changing course when the situation changes. Let us illustrate this with the 
following examples, which are small variations on Braitenberg's simplest designs.  
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A first agent has one light-detecting sensor that directly stimulates its single wheel, implementing 
the following condition-action rules:  

 more light → faster forward movement 

 less light → slower forward movement 

 darkness → standstill 

This behavior can be interpreted as a creature that is afraid of the light and that moves fast to get 
away from it. Its goal is to find a dark spot to hide. This will work better if the terrain or the 
wheels are irregular, so that it doesn't move in a straight line, but somewhat randomly changes 
direction. 

A slightly more complex agent (top in the picture) 
has two light detectors (left and right) each 
stimulating a wheel on the same side of the body. 
It obeys the following rule: 

more light right → right wheel turns faster → 
turns towards the left, away from the light 

This is more efficient as a behavior to escape from 
the light source, since the creature can move in 
different directions, and tends to orient towards the 
direction from which least light comes. 

An alternative agent (bottom) is the same but with the connections from sensor to effector crossed 
(left sensor → right wheel). This implements the following behavior: 

more light left → right wheel turns faster → turns towards the left, towards the light 

This agent seems to first “attack” the light, and then run away from it.  

In another variation, the connections are negative or inhibitory: more light → slower movement. In 
this case, the agents move away from the dark and towards the light. 

In a complex environment with several—possibly moving—sources of light and shadow, 
Braitenberg vehicles will exhibit a complex and dynamic behavior. They will describe a 
zigzagging trajectory with accelerations and slowdowns, moving as fast away as possible from any 
strong light sources while apparently exploring the surroundings, until they find a deep pocket of 
shadow where they can “rest”. Suddenly changing the conditions—as when a light is switched on 
in an otherwise dark room—will make them all move, like a bunch of cockroaches scurrying away 
to hide. This behavior is undoubtedly goal-directed, flexible and adaptive. We might even see it as 
intelligent, the way we attribute some minimal intelligence to a cockroach.  

Yet, the functioning of the agent is purely mechanical, without any information processing or other 
apparently cognitive processes. This illustrates the power of the cybernetic paradigm: it is 

 
 

wheel 
light 

sensor 



- 65 - 

sufficient to have causal connections (here interpreted as condition-action rules) that produce a 
negative feedback (here reducing any deviation from the state of darkness) to produce goal-
directed behavior. Such causal connections will spontaneously evolve through natural selection, on 
the sole condition that their implicit goal (i.e. the attractor of the dynamical system defined by 
these connections) corresponds to a state that is fit for the system. For example, if the agent (e.g. a 
worm or cockroach) is effectively more likely to survive in dark conditions (e.g. because it is less 
likely to be eaten by a predator), then variation and selection will automatically produce this type 
of light-evading rules. This again illustrates how from the systems perspective there is no 
fundamental distinction between mind (intelligent, goal-directed behavior) and matter (sensors 
connected to effectors).  

Example: bacterial movement  

Let us discuss a related example, but this time of a real organism: the movement of the bacterium 
E. Coli. The bacterium senses the concentration of food and poison molecules in its immediate 
surroundings (condition) while it moves. (Note that it cannot sense the direction from which these 
molecules come, unlike a couple of light sensors that can determine in which direction the light 
source lies). If the concentration of food molecules increases and the concentration of poison 
decreases, it will keep moving in the same direction. If the concentration of food decreases or 
poison increases, however, it will randomly change direction, until it again finds a direction in 
which concentrations evolve in the positive sense. The result is that on average it moves toward 
food and away from poison, even though it has no idea in which direction these lie. What is 
experienced as “food” and what as “poison” is the result of natural selection eliminating all 
bacteria that moved towards a type of molecule that their metabolism was not able to handle.  

Stigmergic coordination between rules 

Stigmergy 

Definition: an activity is stigmergic if the trace left in the environment by an action stimulates an 
agent to perform a subsequent action 

The concept of stigmergy was introduced by the entomologist Grassé to explain the activity of 
social insects, such as termites, ants and wasps. This activity (e.g. building a nest) is apparently 
complex and coordinated, even though the individuals are very dumb. The word derives from the 
Greek “stigma” (mark, stimulus, sign) and “ergon” (work). The principle is that the activity 
performed by an agent produces a perceivable change in the environment. The perception of this 
mark or trace functions as a condition that stimulates the same (or a different) agent to perform the 
next step of the activity. In that way, the environment is used as a memory, to create continuity and 
coordination between independent condition-action rules. Grassé focused on the fact that this 
memory can be shared by a collective of agents (as we will discuss in the last chapter), thus 
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helping them to work collaboratively. Here, we will use the concept to explain the coordination of 
rules within a single agent’s mind. 

Coordinating rules 

At first sight, reactive agents behave purely mechanically or automatically:  

1. they react in always the same way to the same stimuli 

• they have no memory of what they have done or where they have been before 

• they cannot integrate perceptions from different sensors since each immediately produces 
an action 

Yet, stigmergy provides them with a “working memory” that keeps track of what they have done. 
This memory is external and registered in their situation with respect to the environment. Each 
action changes this situation and thus the perceived conditions. As such, it can trigger new 
condition-action rules. Thus, at first sight independent rules can “collaborate” on a complex 
problem: when the one has done its duty, but only partially solved the problem, another one is 
ready to come into play. While the rules are implemented independently, their activities are 
causally connected via their effect on the situation. Since each tries to reduce the difference 
between the perceived and the desired situation, all together can tackle a problem with many 
dependent or independent differences. The one simply corrects the problem left unsolved (or 
created as a side effect or mistake) by the other. (This can be the seen as an application of the 
heuristic of Means-Ends Analysis.) 

Example: a bacterium has to find food but avoid different types of poison: each rule (condition 
part) recognizes one type of food or poison, and tells the bacterium to change course whenever that 
condition is getting worse (and stay on the course otherwise). As a result, the bacterium will steer a 
complex path avoiding poisons but targeting the nearest and highest concentrations of food.  

Two rules can be in conflict, e.g. when food and poison are present in the same place. In this case, 
the “food” rule says to move forward, the “poison” rule to move away. Suppose both stimulate the 
same effector. The effector will perform the average of the two actions: e.g. move away, but not so 
fast. The net effect is that behavior will be a compromise, or in the worst case inaction, as when 
rule 1 says “move forward”, but rule 2 says “move backward”. However, such inaction is unlikely 
to continue since any small difference in the strength of perception will produce net overall 
movement, however small. This change will in turn change the situation, and thus the relative 
strength of the two rules. This is likely to further reduce the balance between the rules. 

Complex activities 

The effects of different actions are simultaneously or subsequently applied to the agent’s situation 
with respect to the environment. This results in a complex activity, taking into account many 
sensed variables and their interactions. While the behavior as a whole appears complex, it consists 
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merely of a sequence of simple reactions to an environmental state that changes in a complex way. 
To adopt an example from Herbert Simon, the path of an ant crawling over a beach may look very 
complicated, but it is controlled by very simple rules. Stigmergic coordination between rules 
similarly explains how the instinctive behavior of animals can produce very complex results, such 
as elaborate nests, spider webs, seduction rituals, hunting strategies, etc. 

 

 

Example: wasp nest building 

This mechanism can be illustrated by the wasp Paralastor sp. building its nest in the shape of a 
mud funnel. The subsequent stages S1, S2, …S5 (perceived conditions) of the partially finished nest 
trigger fitting responses R1, …R5. The outcome of a building action Ri produces a new condition 
Si+1 that triggers the next action Ri+1. The wasp does not need to have a plan for building such a 
nest, or to remember what it already did, since the present stage of the activity is directly visible in 
the work already realized.  

However, the rigidity of the underlying rules becomes clear when the sequence is disturbed so that 
stages get mixed up. For example, the wasp’s initial building activity is triggered by the stimulus 
S1, a spherical hole. When at stage S5 (almost complete funnel) such a hole is made on top of the 
funnel (indicated by an arrow), the wasp “forgets” that its work is nearly finished, and starts anew 
from the first stage, building a second funnel on top of the first one. 
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Example: stereotypic behavior of geese 

The ethologist Konrad Lorenz, who studied 
the behavior of geese, observed a similarly 
“stupid” behavior. When an egg rolls out of 
its nest, the goose reacts with a stereotypic 
action in which it extends its neck, and pushes 
the egg back in with the lower part of its 
beak. Normally, this is perfectly adequate. 
However, when the experimenter suddenly takes away the egg while the goose is pushing, the 
goose simply continues its movement until its beak enters the nest. It seems to completely ignore 
the fact that there no longer is an egg to push! The explanation is that the condition-action rule 
specifies the initial condition (egg outside nest), and the appropriate action (push beak from egg 
back into nest), but without specifying any intermediate conditions (like egg halfway back in nest). 
If something goes wrong at an intermediate stage, no specific response is available. In normal 
circumstances (no experimenter making eggs disappear), an error, such as the egg rolling 
sideways, would simply restore the initial condition, and thus stimulate a new corrective action. 
With no egg visible, however, no new action is taken, and the initial action is simply completed—
even though it has become completely useless. 

While these examples from the animal world may seem to have little relevance for human 
cognition, we too often react in stereotypic ways. For example, when I drive my car to go to my 
office, I always take the same route, turning left when entering the city. However, I sometimes 
need to take another route to go to the city center. In that case, when I am not paying attention, it 
often happens that I turn left, as usual, instead of driving straight towards the center. The 
perception of the traffic situation at the entrance of the city automatically triggers my habitual 
reaction—turn left—, even when this is not appropriate. While this behavior is not instinctive, it 
has become pretty rigid because of continual reinforcement. 

Reinforcement learning 

In higher organisms, rules are not necessarily “hardwired” into the genes, but can adapt during the 
lifetime of the agent. Such adaptation or learning means that there is no need to develop new rules 
by the slow and painful process of evolution. The principle is simple: if a condition-action rule 
brings the agent closer to its goal, then the rule becomes stronger, i.e. its influence on the effector 
becomes stronger. We say that the rule is reinforced or “rewarded” for its positive contribution.  

Example: sensitization is a stronger reaction to a particular type of stimulus that turns out to be 
very important. E.g. a rat that ate an unusual type of food and became ill afterwards will avoid that 
type of food later. Its initial distrust of the food is strengthened. 
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Alternatively a rule that increases the distance to the goal is weakened. The rule is suppressed or  
“punished” for its negative contribution. 

Example: habituation is a weakening of the reaction to a recurrent stimulus that turns out not to be 
so important. E.g. a snail that is repeatedly touched without negative effects will stop withdrawing 
into its shell. 

This mechanism of reinforcement learning is a form of negative feedback control: average 
deviations from the goal are reduced by weakening the effect of unhelpful rules, and increasing the 
effect of helpful ones. Note that this control mechanism functions at a higher level: not at the level 
of conditions, like basic control mechanisms do, but at the level of condition-action connections. 
Thus, it can be seen as a meta-control system: controlling the control rules. This makes the 
cognitive system as a whole more flexible. Since all rules work together in determining the agent's 
situation, learning will make average behavior more efficient. There will be less “detours”, 
“overshoots” or errors to be corrected later, and more direct steering towards the goal.  

Learning is a more efficient mechanism than the trial-and-error of natural selection to improve 
rules: bad rules are not eliminated by killing the organism that holds them, but by adjusting or 
weakening their negative effect on the organism. However, the trial-and-error principle remains 
the same: when confronted with an unusual condition (e.g. a lever), the organism (e.g. a rat) tries 
out a potentially useful action (e.g. push the lever down). If this results in a punishment or error 
(e.g. the rat gets an electric shock), the connection between condition and action is suppressed, 
stimulating the animal to perform a different type of action (e.g. stay away from the lever). If the 
action results in a success (e.g. the rat receives food) the connection is reinforced, producing a 
potentially very useful new rule. The more often the rule is reinforced, the more deeply ingrained it 
becomes, and the more difficult it will be to “unlearn” it. 
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Anticipatory Agents 

State-determined systems 

Interiorization of stigmergic coordination 

Although reactive agents are more flexible than might be expected because of the stigmergic 
interaction between their rules via the environment, they could become even more flexible by 
interiorizing this interaction. This means that rules would be triggered by other rules without need 
to perform actions in the environment. The advantages are obvious: no waste of energy, no need to 
correct actions that are misdirected, and therefore no risk of a possibly lethal error.  

To keep the interaction wholly within the cognitive system we need to introduce a new type of 
rules: condition-condition rules. Such rules, like condition-action rules, are triggered by the 
perception of their conditions. However, their effects do not immediately produce new actions, but 
new internal conditions. We will call these conceptions, to distinguish them from conditions 
arising directly from external input, which we will call perceptions. Conceptions may either 
produce actions or further conceptions. The process that produces a conception starting from a 
perception or another conception may be seen as an inference.  

Example:  banana (sensed condition = perception) → fruit (inferred condition = conception) 

  fruit → edible (another conception) 

  edible → eat (action) 

The final action performed depends not only on the initial perception, but also on the internal 
state of the agent, i.e. the whole of other perceptions and conceptions. These conceptions may 
derive from various previous perceptions, functioning like internal “memories”. The state can be 
seen as a working memory, keeping track of relevant previous perceptions and conceptions. 

Definition: an agent that has an internal state or memory that influences its actions is called state-
determined: its behavior is determined not only by observable external conditions, but also by 
“invisible” internal conditions. 

Working memory 

Working memory can be seen as a “message board” through which rules communicate with each 
other: condition-condition rules “post” their inferences on the message board. For example, the 
rule A → B, triggered by the perception of A, will post the conception B on the message board. 
Other rules check the message board. When they find a condition that fits their input condition, 
they add their own output condition to the board. 
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Example: assume A and B are already on the message board. Rule B → C will then add C to the 
board. Rule A & C → D can now also add D to the board.  

This cooperation between rules via the board is similar to the stigmergic cooperation between rules 
via the environmental situation. The difference is that the external state (present situation) is 
replaced by an internal state (contents of working memory). This allows the agent to perform 
various more complex cognitive processes: 

1) The agent can compare or combine different perceptions: 

Examples:  berry is small and light in color → berry is unripe 

  light region next to dark region → boundary of object 

2) The agent can react on conditions that develop over time t, i.e. that have different values at 
different moments. A sequence of perceptions, e.g. A(t), B(t+1), C(t+2), ... can all be kept in 
working memory. 

Example: reduction of light (A > B > C...) signals nightfall 

3) The agent can remember several things to do or to pay attention to. 

Most generally, working memory means that the agent becomes sensitive to the context. The 
context of a perception or conception can be defined as the whole of conditions different from the 
present perception/conception that still affect its interpretation. The same perception will in 
general mean different things depending on the circumstances. For example, the word “bank” 
means different things in the phrases “I brought my money to the bank” and “the ducks were 
sitting on the river bank”. The same orange, striped, cat-like shape means something different 
when perceived in a toyshop or in an Indian jungle. The conditions defining a context are 
registered in working memory as simultaneous perceptions by other sensors, memories of earlier 
perceptions, or conceptions inferred from other earlier conceptions or perceptions.  

The context-dependent interpretation of the perception will determine subsequent conceptions and 
actions.  For example, the perception of a tiger-like shape in a toyshop will trigger a very different 
reaction from the same perception in the jungle. Thus, the context will in general modulate the 
system’s reaction, making it react differently to the same stimulus in different circumstances. This 
enables two important mental mechanisms: controlling goals, and cognitive preparedness. 

Controlling goals 

In reactive agents, there is no need for an explicit representation of the goal. The goal is the 
“attractor” of the dynamics produced by the condition-action rules, i.e. the set of situations that 
actions tend to end up in, or that the agent gets into but does not (through its own actions) get out 
of. 
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Example: for the Braitenberg vehicle that moves away from light but stops moving when there is 
no light, the implicit goal is shade. A dark spot acts as an “attractor” for its dynamics: once the 
agent gets into it, it will not move out of its own accord. 

However, such implicit goals are rigid: they cannot be changed according to circumstances, but 
only by the higher order process of reinforcement learning (which assumes a higher order value 
system determining whether the effect of an action is good or bad).  

In practice, goals depend on the context. For example, when hungry, a good rule is: food → eat. 
Otherwise, this rule is counterproductive. Therefore, it is good to be able to “modulate” rules 
according to the context. This requires an interaction between the rule in focus and other context-
sensitive rules.  

Example: in the context of hunger, it would be good to make eating a goal, i.e. to “activate” all 
rules that lead to eating. 

This requires a working memory where context can be registered. A condition-condition rule can 
then add the right condition to the memory. Further rules will be triggered only if the total state 
(directly perceived condition + context conditions) is right. 

Example: low glucose level in blood (perception of hunger condition) → post “hunger” condition 
on message board. This together with the perception of food can now trigger the rule: food & 
hunger → eat. This rule would not have become active without the perception of hunger. 

The controlled activation of goals in this way can lead to a hierarchy of goals, where some goals, 
implemented by more general rules, are more broad or abstract (i.e. active in a wide variety of 
contexts), while others are more specific. For example, the goal of “wanting to eat” is more 
general than the goal of “wanting to eat ice cream”. 

Implementation as a connectionist network 

State-determined agents require a physical structure to implement working memory and 
anticipation. A direct connection sensor → effector, as in reactive agents, is not sufficient. 
Different sensory signals, including signals perceived at previous times, must come together 
internally and interact. This requires a network of signal-carrying connections coming together in 
nodes. In higher organisms, this function is performed by the nervous system and brain, which 
consists of neurons (nodes) and synapses (connections). In a single cell, the role is played by the 
chemical network of genes and proteins. 

In a connectionist network, nodes represent conditions or actions, while connections represent 
condition-condition or condition-action rules. Connections, of the form A → B, can be stronger or 
weaker, where stronger connections bring more activation from A to B. When A and B are 
conditions, their strength can be interpreted as the conditional probability of B happening, given 
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that A is the case: P(B|A). When B is an action, strength can be interpreted as the intensity of the 
action.  

Implementation of the message board 

The chemical composition of protoplasm in the cell functions like a working memory or message 
board, where chemical signals (molecules) are “posted”. These chemicals can activate or 
deactivate genes on the chromosomes. Activated genes produces proteins. These proteins can in 
turn activate or deactivate other genes. Thus, the gene-protein metabolism, just like the brain, is 
functionally equivalent to a connectionist network. However, it should be noted that the cell 
appears to have a single, global message board: all chemical signals are released in the same 
medium, and can in principle interact with all genes.  

In the brain, on the other hand, message boards are local: only connected neurons can post a 
chemical “message” (via neurotransmitters and electrical activation) to a particular neuron. Other 
neurons can only indirectly—via the propagation of activation across intervening connections—
affect a given neuron. Therefore different brain regions can work in parallel, independently of each 
other. The disadvantage is that there is no overall integration of information and that context 
conditions sensed in some brain regions may not be taken into account in others. We will see later 
how symbolic cognition and the mechanism of the “global workspace” allow the human mind to 
overcome this limitation of neural networks, and thus provide a true interiorization of stigmergy. 

Conditions as categories 

In reactive agents, a condition is typically implemented as a range of values for a sensor. For 
example, the condition “too cold” means that a temperature sensor senses a value below its 
reference value (e.g. 15° C). In state-determined agents, on the other hand, conditions generally 
take the form of conceptions, which emerge from a complex combination of different sensed 
and/or inferred values.  

A condition fundamentally defines a category of perceived and/or conceived phenomena. This 
means that it separates the universe of all possible phenomena into two classes: those that fulfill 
the condition, and those that do not. For example, the condition “too cold” distinguishes all 
situations where the temperature is lower than 15° C from those where it is 15° C or higher. The 
more abstract conception “danger” distinguishes the category of all dangerous phenomena—such 
as fire, snakes, tigers, cliffs, etc.—from its complement of non-dangerous phenomena—such as 
butterflies, babies, clouds, trees, etc. The practical meaning or function of this condition lies in the 
implied action: danger → avoid. 

Such more abstract conditions, or conceptions, largely correspond to what we have called 
“concepts” when discussing semantic networks. The difference is that a concept in a semantic 
network is defined by a fixed number of links to other concepts, which together determine the 
necessary and sufficient conditions for some phenomenon to belong to the corresponding category. 
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For example, a “car” could be defined as a “vehicle” that has “four wheels” and an “engine”. This 
means that if you perceive a vehicle with these two attributes, then you can infer that it is a car.  

In a connectionist network, however, there is no such clear separation between what belongs to a 
category and what does not. For example, it is difficult to draw the boundary between the category 
of cars and the one of trucks. There also is no fixed list of necessary or sufficient conditions: the 
conditions which in combination determine a conception are fuzzily defined and variable, and 
what appears necessary in one context may not be so in another context. For example, if you see a 
vehicle being examined in a garage, with two of its wheels detached, you would still immediately 
recognize it as a car. It is this inherent flexibility of connectionist networks, where the patterns of 
activation as well as the connections are continuously adapting, that makes them much more 
powerful—but also more difficult to understand—than semantic networks. Yet, the mechanisms 
by which this flexibility is implemented are themselves relatively simple, as we will now illustrate. 

Thresholded spreading activation 

Signals from sensors activate nodes in the network. These nodes propagate the activation via 
connections to further nodes. The total incoming activation in a node is the sum of activations 
brought in by all incoming connections. This activation is propagated further via outgoing 
connections provided it passes a threshold. Each node has a threshold activation level. 
Propagation obeys the following rules: 

• activation ≥ threshold → activation is passed on to all output synapses 

• activation < threshold → no activation is passed on 

Such a threshold is necessary in order not to let all nodes 
become activated, i.e. to make clear distinctions between actual 
and potential conditions. To understand what the threshold 
value means in practice, let us consider three special cases: 

1) High threshold: in this case all incoming connections must 
be active to produce enough activation to propagate the 
activation. The node is equivalent to an “AND” gate, or 
conjunction of all triggering conditions. This means that all 
these conditions are jointly necessary to activate their outgoing conception. 

Example: A1 → B, A2 → B, A3 → B, then B is activated when all three A1, A2 and A3 are 
active 

2) Low threshold: here one connection is sufficient to activate the node. The node is equivalent to 
an OR gate, or disjunction of incoming signals. Each condition on its own is sufficient to conclude 
that B is the case. 

Example: B activated when either A1, A2 or A3 is active 
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3) Intermediate threshold: here some incoming connections must be active to activate the node. 
The node does not require a full conjunction, but a significant number of inputs to become active 
itself.  

Example: B activated when A1 and A2, or A2 and A3, are active 

This scenario allows for incomplete information: perhaps all three conditions are active, but only 
two could actually be perceived. In this case, the cognitive system implicitly assumes that the 
missing one could be active as well 

Example: warm-blooded, beak, flies, lays eggs → bird. In general three of these conditions are 
sufficient to conclude that there is a bird, yet a platypus (rare Australian mammal) is warm-
blooded, has a beak and lays eggs but is not a bird. This problem might be avoided by giving a 
relatively lower weight to the conditions “warm-blooded” and “lays eggs”, since a bird shares 
them with many other animals, so that they would need two additional conditions to cross the 
threshold. 

Analogical reasoning 

Two intrinsically different phenomena may be analogous, in that they activate several of the same 
conceptions. For example, a motorboat and a car are both associated with the conceptions: moves, 
carries people, has motor, uses fuel, has steering-wheel, etc., even though they look very different 
and are used in very different circumstances. The recognition of such analogy or cognitive 
similarity is an automatic process of spreading activation activating the same conceptions. It does 
not require any reasoning or higher-order symbolic processing.  

Since activation always propagates backwards to some degree (as we will shortly discuss under the 
label of “recurrent activation”), thinking about a motorboat tends to indirectly activate or prime the 
conception of car via the activation of features that car and motorboat have in common. If then it 
turns out that your motorboat does not start, you will be quick to remember what you did when 
your car did not start. Analogy also appears at a more primitive, perceptual level, as when you 
observe that a particular cloud resembles a camel, since it has two humps and something that looks 
like a head. The perceived cloud and the conception of a camel here simple share some of their 
associated conceptions/perceptions, so that the one may remind you of the other.  

In both cases, analogy is a source of creativity, in the sense that the association of A with a very 
different phenomenon B will activate some features of B that are normally never associated with 
A, but that may actually provide inspiration for solving a problem with A that you otherwise have 
no experience with. 
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Anticipation 

The basic control mechanism is feedback: correcting deviations after the fact. Its basic advantage 
is that there is no ambiguity about what deviation there is. The disadvantage is that it may be too 
late to correct. This can happen when the reaction demands more time to prepare and produce than 
the time that remains until serious damage (or even destruction) of the agent, for example when 
falling off a cliff, or being attacked by a tiger or poisonous snake. Therefore, it is better to 
complement feedback with a different control mechanism: feedforward. 

Feedforward means predicting or anticipating a problem, and acting before it has truly occurred. 
This can be achieved with condition-condition rules. 

Example: big striped cat → tiger, tiger → danger of being attacked. The perception “big striped 
cat” leads here to the conception (message in working memory) of “imminent attack likely”. This 
in turn can now trigger the condition action-rule: attack → flee, before an actual attack happens.  

Advantages of feedforward: 

 less risk of being too late,  

 more time to prepare efficient action,  

 intervening when the problem is still far away generally requires less energy.  

The disadvantage is that the prediction may never be realized, which would make the action 
useless or counterproductive. For example, the tiger may not be hungry, or the snake may not be 
poisonous. Therefore, feedforward must interact closely with feedback, and constantly correct 
anticipations on the basis of new perceptions (for example, stop running when the tiger moves 
away or shows lack of interest).  

Expectation and preparedness 

In general, the agent cannot make exact predictions about what will happen. However, this is not 
strictly necessary since feedback can correct errors as they become apparent. To make feedback 
more effective, it is sufficient that the agent would be prepared to take action. This means that it 
should have some degree of expectation that something is more or less likely to happen, so as to 
reduce the uncertainty about which action(s) may need to be performed. For example, in the 
context of a jungle the perceived play of light in a large bush may be caused by a tiger. Therefore, 
you should be prepared to run, even though the actual probability of a tiger being there may be 
small: the perception that triggered it makes it large enough to warrant preparedness. In the context 
of a park, the same ambiguous stimulus does not warrant any special preparedness, since the 
probability of it pointing to a tiger is negligible. 

In this view, the task of cognition is to maximally reduce uncertainty, and thus optimally allocate 
preparedness. Uncertainty itself can never be wholly eliminated: in a complex, chaotic world, no 
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prediction is absolutely reliable. However, reducing uncertainty may buy enough time to 
implement a solution before the problem gets uncontrollable. Physical preparation can happen e.g. 
by tensing muscles, moving into a certain position, or picking up appropriate tools, weapons or 
shields. Mental preparation can happen by already activating relevant neural circuits, so that they 
are ready to start processing information. Activating relevant conceptions implicitly means that 
other conceptions are not considered relevant, and therefore that it is not necessary to explore them 
in order to solve the problem. This strongly reduces the search space, and therefore the time 
needed to decide about the most appropriate action. 

Example: a medieval encounter 

Imagine a situation in which a swordsman approaches you. Assume that there is an initial 
uncertainty of 1000 actions that may possibly be appropriate, including greeting him, ignoring 
him, running away, etc. Now the swordsman moves a hand to his sword. This perception triggers 
some anticipations of what the swordsman may be up to, producing a reduced uncertainty of 100 
possible actions: he still may or may not attack, and even if he attacks, you don't know how, when 
or where, but the threat level has directly increased. The uncertainty is still very large, but reduced 
by a factor ten. Therefore, it takes on average 10 times less time to solve the problem. This is 
enough to make many potentially fatal problems controllable. For example, you could pick up a 
sword or shield yourself and hold it in a generally defending position. This prepares you for the 
most likely moves if the other were to attack. 

Priming 

The psychological mechanism of priming represents the creation of cognitive preparedness. (Cf. a 
“primer” is a (white) paint put as underlayer to prepare a material for a (colored) finish). Cognitive 
preparedness is sometimes called “set” (as in “mind set”): the mind is set or primed to perceive or 
interpret something in a particular way. 

Example: at an examination the mind is set to expect difficult questions, not jokes, while the 
opposite applies during relaxed conversation with friends. The same remark may be interpreted as 
a joke in one context, as a question in the other.  

Even ambiguous or incomplete perceptions can prime the mind for particular interpretations. For 
example, in an Indian jungle, you see a movement in a bush. In this context, your mind is prepared 
to perceive a tiger. Even when the probability of the movement being caused by a tiger is very 
small, it is worth being prepared, because the danger of a potential tiger attack is so large. 

Priming is investigated in psychology through classical experiments according to the following 
scenario. First, a priming stimulus (“prime”) is given to the subject. For example, the word 
“striped” or “square” is shown. This word may even be shown for such a short time that it is not 
consciously registered (this is called a “subliminal” stimulus). Then, the main stimulus is shown. 
This may for example be a word that can belong to either of two categories: animals or objects. 
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The subject must react as quickly as possible to the stimulus by pushing a button, e.g. the red 
button for animals, the blue button for objects. The experimenter measures the reaction time, i.e. 
the number of milliseconds between main stimulus and button push.  

This produces the following typical results: if the stimulus is the word “tiger”, then the reaction 
time is slightly shorter when the prime word is “striped” than when the prime is “grey”. The same 
effect is found for primes like “lion”, “dangerous”, “jungle”, i.e. all words associated with “tiger”, 
compared to primes that do not have any association with it. Similar effects occur when stimuli are 
images, sounds, colors, etc. 

Interpretation: even for such apparently simple tasks as recognizing a word, the mind requires 
some time for processing the information. This time is shortened when a previous stimulus 
“prepares” the mind to expect a word belonging to the right category: the stimulus will be 
recognized more easily. Thus, previous perceptions and conceptions (context conditions) prepare 
the mind to react more efficiently, as if by reducing the uncertainty about what will be the next 
stimulus.  

 

The importance of novelty 

We argued that the mind is constantly trying to predict what is going to happen. Given the very 
efficient learning mechanisms exhibited by connectionist networks, such anticipation is most of 
the time quite successful. That means that our expectations are usually fulfilled, and that true 
surprises occur only rarely. However, the intrinsic unpredictability of the world implies that from 
time to time we will be confronted with something unexpected, something novel that could not be 
anticipated with our existing knowledge and perception. Such novelty takes on particular 
significance for the cognitive system.  

First, lack of anticipation means that the agent is not prepared to deal with the unexpected 
phenomenon. If the phenomenon would turn out to be dangerous, this may cost the agent dearly. 
Therefore, a first reaction to surprise will be a general arousal or activation, both mentally and 
physically, so as to gather the energy that may be necessary for a fight or flight response. As we 
will discuss further, such arousal is the basis for emotion.  

A concomitant reaction will be what is called the “orientation response”. This is the signal in the 
brain that alerts us to any unexpected stimulus that interrupts normal routine. This automatic 
reaction, which Pavlov called the curiosity reflex, is aimed at gathering information quickly, so as 
to assess what is going on. For example, when you suddenly hear a strange noise, your reflex will 
be to look around in the general direction from which the noise seemed to come, so as to possibly 
find out what caused it. Better understanding of the situation, together with a general readiness for 
action is the most general form of preparation to cope with any unexpected situation. 
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Surprises are not in general dangerous, though. Most opportunities are unpredictable as well. For 
example, an animal or a hunter-gatherer foraging for food generally does not know where a prey 
animal or a store of edible fruits or roots will be found. If food were predictably present in certain 
situations, then foragers would quickly learn how to most efficiently exploit that resource, thus 
exhausting it in the shortest time. For example, a carcass of a large animal left in the savannah will 
quickly be eaten by scavengers such as vultures and hyenas before other foragers may discover it. 
Foraging is generally opportunistic: agents explore their surroundings, looking in as many places 
as possible, driven by the desire to discover new opportunities (or what we have called 
affordances). Therefore an unexpected phenomenon that is not clearly dangerous will be 
experienced as something attractive, something that needs to be explored for possible. 

Even neutral surprises, which are not accompanied by either benefits or dangers, are intrinsically 
attractive, because they offer an opportunity for learning. By definition, an unexpected 
phenomenon implies that the knowledge we have used to anticipate is incomplete. Finding out the 
precise circumstances surrounding this phenomenon may help us to discover new rules that can 
help us in the future to better predict, and thus control, the environment. This explains the innate 
drive of curiosity that leads us to explore unfamiliar situations, to play, and to experiment with 
various objects and actions. As we will investigate further when discussing differences in 
intelligence, this motivation to learn strongly affects the overall cognitive competence that an 
individual achieves.  

Bootstrapping of conceptions 

Recurrent activation 

An important recent insight, brought to the attention of cognitive scientists by brain theorists such 
as Jeff Hawkins, is the fact that there is a two-way interaction between perceptions and conceptions 
(at least in the human cortex). Perceptions are external stimuli interpreted as conditions. We have 
defined conceptions as internally inferred conditions. In neural network terms, perceptions are 
situated in the input layer, conceptions in one of the “hidden” layers, while the triggers for actions 
are produced in the output layer. Normally, activation flows in the direction input → hidden → 
output, with the output feeding back via the environment to the input: 

(1) Perceptions activate or prime conceptions.  

a. If the activation is strong enough to pass the threshold then the conception is 
activated.  

b. If the incoming activation is not strong enough, then we might say that the conception 
is primed, because it can more easily become activated if additional activation 
arrives so that the total activation now crosses the threshold. 
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(2) Conceptions activate or prime conceptions or actions. 

(3) Actions change the external situation, with the changes feeding back into new perceptions and 
new conceptions.  

This is the basic cybernetic control mechanism that allows the agent to correct possibly erroneous 
perceptions, conceptions and actions by sensing their external effects. However, a two-way 
interaction means that corrective feedback can also be internal. In neural network terms, this 
means that the network would be recurrent, i.e. containing loops going from later layers back to 
earlier ones. This can be interpreted as activation flowing back from higher hierarchical levels 
(more abstract or conceptual) to lower ones (more concrete or perceptual).  

In particular, conceptions may activate or prime perceptions. For example, thinking about a tiger 
may prime the visual system for the perception of stripes. If stimuli are too weak or ambiguous to 
be clearly perceived, this priming will facilitate perception. For example, when you see a tiger in 
the dark its stripes may be initially unclear. Once you have inferred on the basis of other clues that 
this is a tiger, the unclear dark and light patches may now be recognized as stripes.  

When the activation flowing back is strong enough, the conception may even activate a perceptual 
circuit, creating a perceptual impression independent of the sensory organs, as when you imagine a 
tiger before your mind’s eye. This is the neural mechanism underlying mental imagery or 
imagination. It was demonstrated by an experiment in which people were asked first to look at a 
simple shape (e.g. a T), then to remember and visualize it. In both cases—seen and imagined—the 
same shape activated the same neurons in the perceptual layer. 

The feedback loop does not end there, as new, imagined perceptions may activate new 
conceptions. These may in turn activate or prime new perceptions. This movement back and forth 
produces a recurrent process that we may call “bootstrapping”.  

Bootstrapping 

Definition: Two things A and B can be said to stand in a bootstrapping relation if A is used to 
develop, support or improve B, while B is used to develop, support or improve A.  

In other words, A and B mutually produce each other, without need for external support or 
intervention. In terms of systems theory, A and B have a cyclical coupling: A → B, B → A. 

The name derives from the “bootstraps”, which are handles on the back of your boots that you can 
pull upwards in order to supposedly lift yourself out of the mud. In this imaginary situation, the 
bootstraps and legs play the role of A, the arms and shoulders the one of B: A pulls up B, B 
supports A.  

This is obviously impossible with real bootstraps. The reason is the physical law of momentum 
conservation: pulling up imparts upwards momentum on the boots B. However, since the total 
momentum of the body is constant, this implies an equal downward momentum on the shoulders A 
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(action equals reaction, according to Newton's laws). The net effect is that the body (A + B) 
remains in the same vertical position. In order to move your body upwards (e.g. jump), you need 
something else to impart downward momentum on: a solid floor, that acts as a base or foundation. 

Metaphorically, however, bootstrapping is possible in many cognitive, informational, or self-
organizing processes. The reason is that there is no conservation law for information: information 
can be created or destroyed. Therefore, increase in information for one component does not imply 
decrease for another. In fact, bootstrapping is a general method to improve the quality of 
information or knowledge. In computing, this is often implemented by an iterative or recursive 
algorithm, where a multistep process is repeatedly applied to input information that consists of at 
least two components A and B, so that A is applied to process B, and B to A. This can gradually 
transform the information until the quality is “good enough”.  

Implementing bootstrapping by spreading activation 

Bootstrapping is useless for a single condition action rule. The loop A → B, B → A is just a 
movement back and forth along the same connection that changes neither A nor B. But when there 
are several perceptions and conceptions simultaneously active, the activation may spread while 
moving forward and backward, each time activating additional nodes that were not initially 
reached. On the other hand, the process may deactivate nodes that after one or more iterations do 
no longer receive enough activation to cross the threshold. After a number of iterations, the 
bootstrapping process is likely to reach an equilibrium state, i.e. a stable distribution of activation 
over percepts and concepts. This is typically a cluster of multiply and strongly connected nodes 
that mutually activate each other, and which is therefore quite stable. This distribution will “fill in” 
aspects that were initially poorly perceived or were missing in the conception. It forms the final 
“interpretation” by the cognitive system of the stimuli that initially triggered the activation. 

Example: seeing a tiger under a bush 

Bootstrapping will fill in for the parts obscured by the branches. Even though the stimuli are very 
patchy, our existing conception of how tigers should look like makes sense of the fragments and 
creates a coherent whole or Gestalt. 

 

A nice visual illustration of 
the power of this mechanism 
of Gestalt perception can be 
found in the picture. At first 
sight (initial perception), it 
only consists of irregular 
black spots spread almost 
randomly over a white 
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space. However, when we suddenly realize that part of these spots belong to the skin of a 
Dalmatian dog (conception), the whole ambiguous picture makes sense, and we recognize the 
outline of the dog, and infer that the other spots are merely shadows surrounding it. However 
vague the picture was at first, once the Dalmatian is recognized, it is difficult not to see it anymore: 
the interpretation of the visual stimuli has stabilized, and it is practically impossible to go back to 
the initial impression of random splotches. 

Bootstrapping is not limited to perception-conception feedback. Conceptions may bootstrap other 
conceptions at different levels. For example, to a scientist a number of theories of specific 
phenomena may suggest a more abstract, encompassing theory. This global theory may suggest 
new local hypotheses. These hypotheses may be tested by observation, or just checked for their 
plausibility. The results may reinforce or correct both local and integrating theories. We have seen 
an example how such a process of theory development can be implemented using spreading 
activation when we discussed Paul Thagard’s work in coherence epistemology. There, the different 
observations (perceptions), arguments and hypotheses (conceptions) mutually reinforced or 
inhibited each other until a coherent pattern or theory emerged. 

Associative learning 

To understand how a state-determined agent can learn, we must extend the paradigm of 
reinforcement learning. Since conditions do not generally produce actions whose result can be 
perceived, simple reinforcement learning is not sufficient: in the rule A → B, where B is a 
conception, there is no a priori method to determine that B is good (brings the agent closer to its 
goal), and therefore that the rule should be reinforced or rewarded. 

We can evaluate condition → condition rules when the second, predicted condition can be checked 
by perception: the rule A → B is to be rewarded if B is indeed perceived after the rule has been 
triggered, i.e. if B receives external activation that confirms the internal activation received from 
A. This can be implemented by the delta learning rule used in connectionist networks. The 
mechanism is illustrated by classical conditioning, like in the experiment of Pavlov’s dog, where 
the learned rule is: bell → food. 

B may not be directly perceivable, however. For example, B may be an abstract category, such as 
“fruit,” which is used to support a concrete inference: 

banana → fruit, fruit → sweet, sweet → eat  

This rule using the abstract concept of “fruit” allows the agent to predict that a banana will be 
perceived as sweet even if it has never eaten one. If the banana is indeed sweet, the rule “fruit → 
sweet” is reinforced. But this does not tell us anything yet about the rule “banana → fruit”. In such 
a case, we need to indirectly evaluate the quality of the connection. In feedforward networks, this 
is achieved via the mechanism of backpropagation: part of the reinforcement is propagated back to 
the previous rule “banana → fruit”. However, this algorithm does not work in recurrent networks, 
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such as those implementing bootstrapping: since rules are connected in cycles, backpropagation 
would cycle endlessly.  

Bootstrapping learning 

Such learning may be achieved by another form of bootstrapping. Compare the activation of B 
produced by A → B (direct or “internal” activation produced by the rule or connection) to the 
activation produced by all other connections coming to B (indirect or “external” activation). Some 
of this external or indirect activation may come directly from perceptions. Most of it will be the 
result of complicated sequences including feedbacks. The learning rule then is: 

• if direct activation < indirect activation, then increase connection strength 

• if direct activation > indirect activation, then decrease connection strength 

This “generalized delta rule” is a negative feedback mechanism that reduces the differences 
between internal and external activation, and thus eventually makes both sources of activation 
equally strong on average. This implies that if one of the sources is wrong because of noisy 
perception, the other one will balance it out, thus bringing overall activation closer to what it is 
normally expected to be.  

This is a form of bootstrapping because one source of information (indirect connections) is used to 
improve another source of information (direct connection A → B), and vice versa. Indeed, when 
examining A → C, the activation brought to C via A → B, B → C will be taken into account, so 
A → C partly determines how to change A → B. On the other hand, A → B partly determines how 
to change A → C. 

The result is that the network as a whole becomes more coherent: different rules become more 
mutually supportive in their implications; inconsistencies between rules are gradually eliminated. 
This fits in with the constructivist view, which does not a priori distinguish between conceptions 
and perceptions.  

Note that the effect of the above learning scheme is likely to be similar to that of the (much 
simpler) Hebbian rule: each time A and B are both activated (because of direct or indirect 
activation), the connection strength A → B is increased with a fixed amount (say 1%), up to its 
maximum value (say 100%). Each time A is activated, but B is not, the connection is decreased 
with an equal amount, because it did not correctly anticipate the state of activation of B. On 
average the strength of the connection will converge towards the percentage of cases in which B 
became active when A was active, i.e. the conditional probability P(B|A). 

Associations 

Learning will create and reinforce associations between conditions that are frequently experienced 
(activated) together, or the one shortly after the other. 
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Example: banana → sweet: the more often the two conditions co-occur, the stronger the 
association becomes, and the more activation will move from the one to the other.  

However, learning cannot create associations between phenomena that have not been experienced 
together.  

Example: rabbit → hat, denoting the idea that a rabbit can wear a hat. Rabbit and hat will normally 
never be activated together. Therefore the delta rule will not increase the strength of the connection 
above 0.  

This implies that “associative” agents cannot reason about situations that they have never 
encountered before (or at least of which they have encountered no similar situations before). Yet, 
people are able to reason about rabbits with hats or other situations unlike any they have ever 
experienced, for example, when thinking about creating a new cartoon character or circus act. To 
tackle this problem, we will need to consider a higher level of cognition: symbolic thought. 

Episodic memory 

A first step in the development of human-level cognition is the evolution of episodic memory. 
Episodic memory registers and stores “episodes”, i.e. specific events or sequences of events.  

Connectionist learning normally requires repeated activation to reinforce a connection sufficiently 
so that it becomes a reliable part of memory. This allows it to learn general, recurrent regularities 
or rules, like “bananas are (usually) sweet”, but not specific occasions, like “the banana I ate 
yesterday was sweet”. Yet, people (and apparently some higher animals) are able to remember 
individual episodes, such as an incident, a surprise, or even what they ate for lunch yesterday. 
These events have been experienced just once, yet their memory trace has somehow become 
strong enough to be repeatedly recalled, sometimes many years later.  

This requires some internal “reinforcement” mechanism, where the connections for particularly 
interesting events are repeatedly activated until they are strong enough to store the necessary level 
of detail. The mechanisms may be another form of iteration or bootstrapping in which activation 
recurrently cycles through the same connections, without additional stimulation from outside 
perception.  

This happens probably in the hippocampus region of the brain, as confirmed by the following 
observations. Damage to the hippocampus (e.g. because of a stroke) usually results in profound 
difficulties in forming new episodic memories, although associative learning can still take place. In 
other words, people with a damaged hippocampus can learn new skills, but cannot remember 
learning them. For example, they may become familiar with the doctor that regularly visits them, 
but not remember ever having met the person. 
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Symbolic Thought 

Extending working memory 

Short term memory 

In neural systems, working memory corresponds to a state of activation. This state is constantly 
changing: 

• because of new perceptions (inputs) producing new activation 

• because of inferences (propagation of activation) leading to new conceptions 

• because of diffusion leading to the gradual disappearance of activation states 

• most basically, because an activated neuron cannot remain activated. The neuron 
becomes fatigued or “tired”, and will spontaneously lose its activation. 

In that sense, “working memory” is not good at memorizing, i.e. storing and retaining information, 
but only at working with the information, i.e. processing it into new information. It is difficult for 
the brain to remember individual items in a “train of thought” without tracing back the whole 
sequence of activation spreading across associations. Individual perceptions or thoughts can only 
be stored via episodic memory, but this requires quite some time for consolidation in the 
hippocampus, and is only available for really important (typically emotionally loaded) “episodes”. 
Moreover, only true episodes are stored, i.e. combinations or sequences of causally connected 
perceptions, such as “I ate a sweet banana yesterday after lunch”. Episodic memory does not store 
separate items, such as “banana”.  

Yet, people have a limited storage capacity in working memory of approximately 7±2 items 
(according to Miller) or 4 (according to the more recent work of Cowan). This may for example 
contain a list of items to buy: bananas, carrots, potatoes, and tomatoes. This capacity is often called 
“short term memory”.  

A plausible mechanism to implement this in a neural network is activation cycling up and down 
along a perceptual-conceptual “bootstrap”, e.g. from the concept “banana” to the visual image of a 
banana, and back. Because the activation moves away, neurons do not get “fatigued”. Because it 
then cycles back, a neuron that lost its activation becomes activated again after a short period. 
Such a mechanism is very energy intensive, and requires constant regeneration of activation in a 
large array of connected neurons. Moreover, different “memories” (activation cycles) can easily 
interfere when activation spreads from the one into the other, thus perturbing the overall pattern. 
This may explain why our “magical number 7” (or 4) is so small.  
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Extending memory into the environment 

We have seen how reactive agents use their external state (situation) as a substitute for their 
lacking internal state (working memory). However, like internal activation, this situation changes 
constantly with their actions or with changes in the environment. It is therefore not useful for 
reliably storing memories. Agents can use the environment in a smarter way, by “inscribing” their 
memory contents in a secure, external medium that is independent of themselves.  

Examples:  

• marking a terrain with pheromones (ants) or urine (dogs) 

• making marks on wood to count sheep 

• writing to store the contents of a shopping list,  

• painting, drawing, sculpting, assembling ... to build up and retain the consecutive elements 
of a conceptual design 

A stable, passive medium, such as paper, stone, or wood, retains the information until the agent 
himself changes it. Such medium can store an unlimited amount of information.  

Changing the state of the environment can be done by manipulating objects: cognitive “tools”. 
They have a state independent of the internal state of the agent. This object state can be stable or 
dynamic. If it is stable, it can be used for storing information. If it is dynamic, it can be used for 
processing information. This allows the agent to “try out” or explore possible actions by playing 
with objects.  

Examples: puzzle pieces, building blocks, throwing a ball. 

Symbolic representations 

Symbols 

The external trace or “mark” left by an agent in the environment functions as a symbol for the 
information or mental content that is stored. Perceiving the symbol reactivates the neural circuits 
that led to its creation, and thus recreates the corresponding working memory, even if other 
processes have in the meantime completely erased the original working memory. By repeatedly 
using the same type of symbol for the same type of mental content, the agent learns a strong 
association between the perceived symbol and the corresponding conception or perception: when 
perceiving the symbol, the agent is reminded of the concept; when thinking about the concept, the 
agent is reminded of the symbol.  

This may create a condition-action rule of the form: concept → produce symbol. This rule works 
to exteriorize the mental content, making the inner cognition explicit and perceivable. At the same 
time, a perception-conception rule is created: symbol → concept. We can say that the symbol 



- 87 - 

represents or denotes the concept, and that the concept is the meaning or signification of the 
symbol.  

Symbols to aid thinking 

A complex system of symbols can represent a complex process of thought. When different 
thoughts are exteriorized in sequence, an external collection of symbols is produced. Since earlier 
symbols are retained, until they are possibly erased, the collection grows more complex. Thus, the 
content of the external working memory develops as different internal condition-action or 
condition-condition rules collaborate to improve it. Since external working memory has a much 
larger capacity, the results can be much more complex than with internal working memory. 

Examples: 

 making a complex calculation using pen and paper 

 drawing a plan for a building 

 writing a paper or essay to develop a complex scientific or philosophical argument 

Independent symbols can be combined. During the complex reasoning process, a symbol 
representing X may become combined with a symbol representing Y, even when there is no direct 
association between X and Y in the mind. For example, a mark or object representing one concept 
can be put near to another mark or object. It is sufficient that at some stage in the process X is 
activated and inscribed, and at another stage Y, while using the same medium or set of external 
objects. The intermediate reasoning stages do not need to be inscribed, though they may be. 

Example 

 rabbit (inscribed as symbol) → tame animal (internal conception) 

 tame animal → circus 

 circus → clown 

 clown → funny hat (inscribed as symbol) 

This ends end up in the symbolic representation of a rabbit with a funny hat.  

“Reading” the combination of symbols will co-activate the corresponding concepts, which may 
trigger memories of their perceptual appearances. Thus, a person can imagine a rabbit with a hat, 
even though he has never seen both together. The external medium has been used as a “shortcut” 
to directly connect concepts that are only indirectly associated in the brain. This co-activation in 
working memory can now be stored in long-term memory by reinforcing the connection between 
the two concepts. In this way, complex thought processes using exterior symbols can be 
interiorized again. 
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Dynamic symbols  

A symbol can be “inscribed” in a medium that does not retain its structure, such as sound, light, 
smoke signals, gestures. This is less useful to memorize concepts for the long term, although 
perceiving the symbol will reactivate the internal conception and thus support internal working 
memory. However, such plastic media can be useful to communicate information to others: 
dynamic perceptions are better to attract the attention and generally require less effort to produce.  

This includes “communicating with oneself”, such as speaking to oneself or scribbling and erasing 
notes. This is merely an extension of internal cognitive processing during which the symbols 
support the dynamic cognitive processes.  

From symbols to rational thinking 

Interiorization of symbols 

Assume that an agent learns to regularly exteriorize thoughts, using the following sequence of 
processes:  

conception → symbol (externalizing action), collection of symbols (perception) → new conception 
(internal) → new symbol (external), etc.  

The mind will then learn to associate the different steps in the reasoning process: associative 
learning will create strong connections between internal conceptions and memories of perceptions 
that have been regularly co-activated. These connections can now function as shortcuts, leading 
from conception via interiorized symbols straight to new conceptions, without need to produce an 
exterior symbol: 

concept → memory of symbol's appearance (e.g.word, phoneme) → new concept 

Thus, the interiorization of symbols can create shortcuts between concepts. Assume that concept A 
is connected to the interiorized symbol A' that represents it. Interiorized symbol A' will be 
connected to another interiorized symbol X'. This is because all symbols (typically words) belong 
to a relatively small “vocabulary”, that are related by grammatical rules and that use the same kind 
of perceptual structures (e.g. phonemes, lines and dots...). X' is connected to concept X. This 
produces the following sequence: 

  A → A' → X' → X  

This path is rather short for activation to follow. On the other hand, the shortest sequence of purely 
conceptual connections (without symbols) may be very long:  

 A → B → C → D → ... → X 
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Note: such distances in connectionist networks can be calculated more accurately using Markov 
processes, as the average time for a random walker to reach X from A, or as the amount of 
spreading activation reaching X from A. 

Inner speech means speaking to oneself without actually pronouncing the words, i.e. activating the 
memories of sound perceptions of the words standing for the concepts. This is an example of a 
cognitive process that uses such a shortcut between concepts via interiorized symbols. Such a 
process may explain the emergence of symbolic thought. Indeed, conscious, rational thought is 
largely linguistic, using inner speech, or sometimes visual, using imagery or “inner visualization”.  

The same process plays an important role in cognitive development. Babies are state-determined 
agents: they do not as yet use symbols. Their cognitive development is in the “sensory-motor” 
stage. That means that they react to perceptions immediately by actions, without inner reflection or 
reasoning. (note that their actions are not merely reactive, since they depend on the baby's inner 
state). Small children then learn to talk, i.e. using symbols. When they learn to think, they start by 
“thinking aloud”: speaking to themselves. As they grow older, they interiorize this language, 
turning it into inner speech. In that way, they learn to think symbolically 

Reflection 

Interiorized symbols (words) allow “rational” thinking or reflection, i.e. considering different 
possible states of affairs in the mind without perceiving them or even having perceived them 
before, and making inferences on them. This includes anticipating what would happen in a 
particular situation, deciding how to act if a particular situation would occur, and choosing the 
“best” of the conceivable situations as a goal to aim for. Reflection allows the individual to plan 
actions long before they are performed—if they are performed at all. This is the essence of 
complex, internal problem-solving.  

Example: a chess player considering different sequences of moves 

Such reflection uses existing, stored knowledge, some of which can be expressed in symbolic 
form, but also some of which is purely associative or intuitive (i.e. it cannot be expressed explicitly 
in the form of discrete symbols). Although it is tempting to express reflection purely formally or 
symbolically because it essentially relies on (internalized) symbols and on logical inference rules, 
it cannot function in reality without a huge amount of implicit, intuitive knowledge. This intuitive 
knowledge is needed to select the most relevant ideas from the astronomical amount of logically 
possible inferences, and to bridge the gaps in the argument, for which symbolic knowledge is 
simply lacking. Thus, what we have called the “frame problem” for logical reasoning is avoided 
because of the associative knowledge in which the symbols are grounded. 
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Creativity 

Language is a collection of symbols (words) organized by a generative grammar, i.e. a finite set of 
rules to form an infinite set of possible sentences. Symbols (external or internal) are not 
constrained to have direct associations in order to be activated together. This allows the mind to 
consider a much larger variety of possible combinations than what could be produced by activation 
spreading along associated perceptions. Thus, human beings have been able to conceive such 
counter-intuitive combinations like a rabbit with a hat, a boat with a motor, a vehicle that flies, or a 
negative number.  

In this way, the human mind can be creative. It can imagine situations that no one has ever 
encountered, and reason about these situations as if they were real. This inner reflection already 
eliminates implausible or unworkable conceptions, thus producing realistic designs or plans to 
bring about imagined situations. This is the basis of invention, design and discovery. It is 
essentially what makes human cognition so much more powerful than animal cognition 
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Consciousness and Feeling 

Introduction 

Consciousness is a very controversial and confusing topic, characterized by a lot of 
misunderstanding and a variety of bizarre, religious or spiritualist connections, e.g. with the soul, 
Buddhism, quantum processes, panpsychism, etc. Moreover, there exist little scientific 
methodology to study it. Therefore, until about 1990, consciousness was almost a taboo word in 
cognitive science and psychology. This changed in part because of new methods for brain imaging 
and detection of neural activation that allowed scientists to monitor what goes on during various 
forms of conscious or unconscious processing, and because of new insights proposed by 
theoreticians dissatisfied with the symbolic theories of cognition and their neglect of 
consciousness and experience. These innovations led to the emergence of the presently fashionable 
field of “Consciousness studies” that overlaps with cognitive science. 

One clear step forward was the distinction by the philosopher Ned Block of two basic types of 
consciousness, thus removing a lot of confusion: 

• Access consciousness is the ability to monitor and control one's own thought processes. 
This includes the ability to make them explicit, express them in words and remember 
them. It typically requires strong, focused attention.  

• Phenomenal consciousness is the subjective experience that we undergo when perceiving 
or thinking about phenomena, i.e. the “feel” of a phenomenon. It includes the fundamental 
sensed qualities of a phenomenon, or what the philosophers call qualia (plural of quale), 
such as the quality of “redness”. We all know such qualities as a feeling or experience, but 
cannot really explain them in words to somebody who did not experience them (e.g. a 
blind person) 

We will continue to study these phenomena from our connectionist-cybernetic perspective. This 
means that we interpret cognitive processes as activation spreading across a complex connectionist 
network that includes many feedback loops between perceptions, conceptions and actions. 
Consciousness will then in essence be a clearly experienced, focused type of activation, and not a 
strange, “spiritual” phenomenon that cannot be understood from within contemporary science.  
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Degrees of consciousness 

Subconscious processes 

We must first note that most cognitive processes happen subconsciously: they occur on “automatic 
pilot”, in a reflex-like, instinct-like manner. Examples include the control of breathing or walking, 
processing of light and sound, the recognition of familiar shapes, and the understanding of 
language. These processes require little mental effort, even when they may require a lot of physical 
effort, as in the case of running. They are automatic, involuntary, without thinking: you do not 
need to explicitly want or set yourself a goal to perform these processes.  

Example: pulling your hand away from a hot surface 

You also generally will not remember how you performed them, because the associated actions are 
not stored in episodic memory. 

Examples: walking, driving for an experienced driver: you generally cannot remember when you 
have made a step or when you changed gear. 

The reason is that genes (instinct) or experiences (learning) have created strong and reliable 
connections along which activation can propagate quickly and without error. This means that 
implicit expectations and goals are fulfilled smoothly and reliably, so that there is no need to 
monitor the activity.  

Implicit knowledge 

We can even learn new associations and skills subconsciously. This is called implicit learning. 
This phenomenon can be illustrated by an experiment in which people were asked to predict the 
next letters in a seemingly random series of letters, which has, however, complex statistical 
regularities. After people have seen many series, they tend to predict the next letters with a 
probability much better than chance. Yet, they have no idea why they pick out certain letters rather 
than others. Moreover, they even believe that they are guessing purely at random, so they are fully 
unaware that they have learned to anticipate the sequence.  

In fact, most of the things people have learned have this nature: you probably know very well how 
to walk or how to drive a bike, but you cannot remember precisely how you learned it, and you 
would have even more difficulty explaining to someone else how to do it. While this is typical of  
the so-called “procedural” or “how to” knowledge that controls action, also the condition-
condition rules that control anticipation are mostly implicit. For example, most of the time you 
would have no difficulty interpreting someone’s emotions after seeing his facial expression. Yet, 
unless you are a trained psychologist, you probably would not be able to explain which 
movements of which facial muscles you paid attention to, or what precisely distinguishes an 
expression of disgust from an expression of fear. We constantly pick up such at first sight minor 
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cues, such as someone’s expression, position, arm movements, or intonation, and derive a lot of 
inferences from them, e.g. about the person’s character, intentions or mood. We obviously must 
have learned how to do that, yet we cannot say when or where we have learned it, or what rules we 
use to come to such conclusions.  

Such implicit (but very real) knowledge is what we call intuition. While seemingly mysterious, 
implicit learning and intuition are accurately simulated by neural networks, which learn the same 
kind of vague, indirect and implicit associations between a complex range of observations, 
allowing them to make reliable predictions. The fact that most knowledge is intuitive and 
subconscious explains the knowledge acquisition bottleneck that is encountered by knowledge 
engineers trying to codify someone’s expertise in the form of explicit rules. It also explains the 
sometimes uncannily accurate guesses that a so-called “clairvoyant” or “psychic” can make about 
a person’s present situation and thoughts, apparently without receiving any explicit information. 

Full consciousness 

A few processes require full attention, awareness, or consciousness. This is because there is 
substantial uncertainty about whether their outcome will be as expected. Therefore, learned 
reflexes cannot be trusted on their own, and have to be closely monitored, so that they can if 
necessary be redirected. This includes the following conditions: 

1) When something unexpected happens: 

Examples:  

- stumbling while walking 

- seeing something incongruous, such as an upside down car, or a man without arms 

- hearing a sudden loud noise 

- reading a phrase that does not make sense 

In such cases, the mind anticipated incorrectly, and needs to focus its full attention in order to get 
back on the right track, i.e. understand what is happening and get back in control.  

Examples: 

- checking what made the noise, or was responsible for the upside-down car 

- rereading the sentence and trying to understand the grammar or context 

2) When tackling a complex or unusual problem: 

Examples: 

- making a long division such as 23749/684 

- standing on one leg 

- walking for a 1 year old,  
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- driving for a beginning driver 

- writing a scientific paper 

Here the result by definition cannot be anticipated, and every small step must be checked via 
multiple feedbacks. 

3) When it is important that nothing escapes the attention (typically because the risks associated 
with possible errors are too great) 

Example: walking on a rope, or undergoing a job interview 

 

Conscious control is especially necessary with a combination of the above conditions, for example 
when suddenly being confronted by a tiger, or a man with a gun.  

In such cases a lot of activation is needed to explore different routes, e.g. to perform backtracking 
when previous attempts turn out to be misdirected. This activation can be measured via brain scans 
(functional Magnetic Resonance Imaging: fMRI). It turns out that when performing an unfamiliar 
task, a lot of energy is used. However, when the task becomes more familiar after a few 
repetitions, the use of energy decreases dramatically. Interestingly, this decrease happens more 
quickly with more intelligent people. The interpretation is that intelligent people simply learn new 
rules more quickly. 

Partially conscious processing  

Many processes require an intermediate level of attention. This happens when the situation is not 
so routine that no attention is needed, but it is sufficiently safe and predictable so that we do not 
need to put in too much attention.  

Example: chatting with a close friend, walking through a busy city, singing in the bath, ... 

Such situations will typically remain for a while in short-term memory, but not in long term 
memory, since they are not sufficiently “interesting” to activate episodic memory 

Consciousness of change 

Summarizing the previous observations, we can note that consciousness is in a sense inversely 
proportional to the degree to which the cognitive system is able to correctly anticipate what is 
going to happen or what needs to happen. The better the mind is at anticipating, the less 
consciousness or attention it needs. On the other hand, the more unexpected, difficult to control or 
novel a situation, the more attention it receives. 

This principle is rooted in the cybernetic basis of cognition as the control of diversions: 
information processing is only necessary when the situation somehow deviates from the desired or 
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expected situation. Thus, the origin of cognition is the perception and interpretation of differences 
or changes. This mechanism is so fundamental that the perceptual system tends to completely 
ignore unchanging phenomena.  

Example: Frogs can only see things that move, such as a fly or a bird approaching. They are 
effectively blind to static parts of the background, such as stones, branches or leaves. Functionally, 
this makes sense since frogs only eat moving prey, and only need to be afraid of moving predators.  

Physiologically, the mechanism is simple: the neurons in the retina that sense incoming light get 
“fatigued” and thus stop propagating activation until a different type of stimulus comes in. This 
may be understood as a simple energy-saving device: why waste all that neural activation to 
endlessly repeat the message that things are still the same? The same mechanism is still present in 
human vision. This can be demonstrated via an experiment where a tiny projection apparatus is 
stuck to the eyeball, so that the image it projects moves together with the eye, and thus activates 
always the same cells in the retina. With this set-up, the image is no longer registered, and the 
person has effectively become “blind” to it. The only reason that we can see unmoving scenes is 
because our eyeballs are constantly moving (“saccading”), scanning different aspects of the scene, 
so that the stimulation of the neurons in the retina constantly changes.  

Similar neglect of static stimuli occurs for the other senses. For example, you typically only 
become aware of an unchanging background noise, such as the hum of a refrigerator, when it 
suddenly stops. Similarly, you feel your shoes when you put them on, but while you are wearing 
them, you forget about them. You also quickly get used to a particular smell that hangs about a 
place, and stop noticing it.  

At a higher, conceptual level too, people tend to be oblivious to circumstances that are always the 
same. This includes phenomena that are intrinsically moving or dynamic, such as the flow of a 
river or a repetitive sound, but where this change is perfectly predictable: while the phenomenon 
itself may change, some of its higher level properties, such as the speed and direction of the flow, 
or the rhythm of the sound, remain invariant. This means that neurons encoding these higher-level 
properties will stop propagating activation because of the same “fatigue” mechanism. Only when 
that property suddenly changes, such as the rhythm increasing or slowing down, will they start 
firing again, thus attracting our attention to a potentially meaningful change in the situation that 
demands cognitive adjustment and therefore conscious processing. 

Causal Attribution 

The same ignorance of invariant properties can be found in the cognitive process of causal 
attribution: the search for causes to explain observed events that were not anticipated. For 
example, if someone falls from a staircase, you will normally not attribute that fall to the force of 
gravity, the steepness of the staircase, or the weight of the person that fell. Physically, these are all 
necessary conditions for the subsequent effect: without them, no fall would have happened. Yet, 
they are not seen as causes, because they are invariant, i.e. present all the time. Causal attribution 
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will typically single out the phenomenon that deviates from the “normal”, i.e. from the default 
expectation of how things are supposed to be. In this case, the preferred cause may be a child’s toy 
lying on the staircase, or a moment of dizziness, because these are necessary conditions for the fall 
that are not expected to be there. 

Meditation 

Meditation is an ancient technique to control and manipulate consciousness. It was developed in 
different religious traditions as a way to achieve a higher insight into reality. The principle is 
simple: while sitting without moving in a relaxed position, the meditator must concentrate as long 
as possible on an unchanging perception, or, somewhat more difficult, conception. Typical 
phenomena that are used to focus attention on are the flame of a candle, the air that enters the nose 
while breathing, or a word (a so-called mantra, such as “om”) that is silently repeated. Because of 
the mechanism of neuronal fatigue, this is intrinsically very difficult: the candle flame quickly 
disappears from the perceptual field, and attention wanders to different perceptions (e.g. 
background noises, or pain in the legs from sitting too long in the same position) and conceptions 
(e.g. remembrances, or worries about work). Yet, the meditator is trained to as much as possible 
ignore these distractions and bring attention back to the phenomenon in focus.  

When meditation is continued long enough, the effect is first a deep relaxation, and eventually a 
“mystical experience”, where the subject loses the sense of being a specific individual located in a 
particular place at a particular time. This loss of identity is replaced by the experience of becoming 
one with the world, of dissolving into the All (the so-called “oceanic feeling”). Depending on the 
religious tradition, this ultimate state can be interpreted as a “union with God” (Christianity) or the 
reaching of Nirvana (Buddhism). 

The psychiatrist Deikman (1966, 2000) has interpreted a mystical experience as a 
“deautomatization” of the cognitive system. Following our connectionist model, we can explain 
that in the following way. Normally, activation is automatically propagating along the strongest 
connections between neurons, reaching associated memories and thoughts, and thus situating the 
present experience within its broader context. The mechanism of neuronal fatigue ensures that 
such propagation processes never come to a halt. The continuous refocusing of attention, and 
therefore activation, on the same neural region, however, creates a kind of “overload” of these 
strong connections, so that they stop propagating activation. This allows much weaker, more 
diffuse connections or associations to capture activation. The effect is that experience loses its 
sense of sharp distinctions and clear situation, instead producing a blurred, “oceanic” feeling. 
Moreover, these weak connections produce various new associations that normally never get the 
chance to be activated because they are dominated by the strong, frequently reinforced 
associations. The result is a “fresh” experience, where the same phenomena are seen in a different 
light, possibly triggering novel sensations and creative insights. Similar mystical experiences can 
be produced by hallucinogenic drugs, such as LSD, which appear to facilitate the flow of 
activation along unusual connections. 
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Change blindness 

 

Although our perception is especially 
attuned to change, sometimes the system can be fooled: if the mind thinks that it anticipated 
correctly, actual changes may not be noticed. This phenomenon is called change blindness. 
People may not become aware of a change when it is “masked” or camouflaged by another, more 
noticeable disturbance, such as a flickering of the image. After the interruption, seemingly the 
same image is shown. Since the image at first sight looks exactly the same, the brain assumes that 
it anticipated correctly and that the original image is still there. Yet, there is an important, but non-
intuitive difference.  

For example, a photo of an airplane is shown first with, then without, a motor on the wing, or a 
photo is shown in which some element of the background has changed color. People will generally 
not notice the change, and find it hard to believe that there actually was a difference between the 
two pictures, although the difference becomes obvious when the two pictures are put side-to-side. 
In this case, although there was a failure of anticipation, the error was not perceived, and therefore 
consciousness was not triggered by it.  

This example also illustrates the fact that perception does not create an accurate mental “image”, 
but merely a more vague and abstract representation. Indeed, if such an internal image were 
registered, then it should be easy to notice the obvious difference between the images before and 
after the flickering. The fact that this does not happen demonstrates that perception merely pays 
attention to the aspects that the mind considers meaningful, in the sense that they are relevant—
directly or indirectly—to the agent’s goals. The presence or absence of a motor in the above 
photograph apparently is not considered sufficiently significant to be registered—except perhaps 
in the mind of a pilot. However, if the motor would suddenly disappear from the picture (without 
being masked by a more salient perturbation), then the change detection mechanism would kick in 
and immediately attract our attention to this incongruous phenomenon. 

More generally, the change dependence of perception and awareness demonstrates how unrealistic 
the reflection-correspondence theory of cognition is. Cognition does not accurately reflect static 
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objects: it only registers changes (deviations, distinctions) and relationships between changes 
(connections, causality).  

Access consciousness 

Controlling attention 

Access consciousness implies the ability to control activation. This requires directing activation to 
the task at hand, while inhibiting the spread of activation in unwanted directions.  

A classic experiment to test this kind of control is the Stroop task: subjects have to look at a list of 
words denoting colors. The words are themselves colored, but the color of the letters and the 
meaning of the word are sometimes contradictory. For example, “green” may be printed with red 
ink. The task is either to name the color of the ink, or to read the word. This triggers two 
contradictory perception-action rules: 

word “green” → say “green” 

color “red” → say “red” 

Depending on the task chosen, one type of rule must be suppressed. Otherwise, there will be many 
errors. This is difficult, and demands a lot of attention.  

When the attention is strongly focused on a particular task, the resulting inhibition can be so strong 
that phenomena that under normal circumstances would have reached consciousness, now fail to 
be noticed. This can be illustrated by another psychological experiment.  

Example: in this experiment people had to watch a movie of people playing a ball game. They had 
to pay special attention to how many times the ball changed hands between the two teams—which 
was difficult given that there was a lot of movement. When a man in a gorilla suit very obviously 
passed in between the players, most observers did not notice him. When questioned afterwards, 
they were sure never to have seen such a crazy thing like a gorilla passing by.  

Interpretation: the focus on the ball suppressed all rules that would normally be activated by 
stimuli irrelevant to the task, including something as unexpected as a gorilla. 

Such suppression can even be accurately measured in monkeys. Sensors are inserted in the 
monkey's brain to detect the activity of different neurons. The monkeys are trained in a task 
(monitoring what happens on a computer screen) that demands full attention on one type of 
stimulus, e.g. green rectangles. As a result, the activation of the neurons responsible for perceiving 
other types of stimuli is suppressed. For example, when red circles appear on the screen, the 
neurons responsible for perceiving them are activated only 10% of their normal activation value 
without the task.  
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These experiments can be seen as further examples of the conception → perception feedback: a 
conception (in this case the specific task that demands the attention) changes the perception, so 
that stimuli relevant to the task are perceived more clearly, while the others are hardly perceived at 
all. 

Self-awareness 

Access consciousness is the ability to monitor and intervene in one's own cognitive processes. This 
means that the subject is aware that s/he is thinking, imagining, feeling or perceiving, i.e. aware 
not only of the phenomenon being perceived, imagined... but of the process of perceiving, 
imagining... and therefore of the agent performing the process. Thus, access consciousness 
includes self-awareness or self-consciousness.  

This type of consciousness seems typically human. For non-human animals, self-consciousness is 
measured via the mirror test: an animal is considered to exhibit self-awareness if it reacts when it 
sees in a mirror that a colored dot has been painted on its forehead. Only chimpanzees, dolphins 
and elephants have passed that test. Dogs and cats fail. It is not clear, though, in how far the mirror 
test really measures some form of self-awareness or self-concept. 

In human self-awareness there is an important role for symbolic cognition. Access consciousness 
is typically accompanied by thought processes or reflection, which are themselves supported by 
interiorized symbols (words). One important symbol is the one representing the “self”, for example 
the words “I”, “myself” or my name. Using this symbol in combination with other symbols, allows 
me to reason about myself.  

The global workspace model 

The brain consist of an array of many, largely independent modules, that work in parallel, each 
specialized in a particular task‚ such as recognition of specific shapes, emotions, or control of 
specific movements. These brain modules have few direct connections that allow them to 
communicate so as to form a global picture of the situation. One way for them to pool their 
expertise is by exteriorizing the inferences made by some of the modules, so that the results can be 
perceived, i.e. re-entered into the brain and thus processed by the other modules. Exteriorizing 
cognition takes place through the creation of physical symbols, such as drawings, utterances or 
writings, that represent the mental contents. Typical examples of this process are talking to 
oneself, or taking notes and drawing schemas while thinking about a complex problem. This is an 
example of stigmergic interaction between the modules within one’s brain: a module’s outcome 
through action is converted into a change of the environment; this change is then perceived again, 
triggering new inferences by the same or other modules, that produce a new action, and a 
subsequent modification of the external symbols. In this way, an idea is step by step elaborated and 
refined. 
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As the individual becomes experienced with this process, however, shortcuts are developed and 
symbols are interiorized again. Thus, children talking to themselves while thinking will soon learn 
to use inner speech, i.e. forming sentences in their head without actually vocalizing them. From the 
perspective of global workspace theory [Baars, 1997], access consciousness is nothing more than 
the “working memory” or “theater” within the brain where these interiorized symbols are produced 
and combined, so that they can be submitted to the scrutiny of the various more specialized 
modules. (Note that while this model uses the “theater” metaphor, it does not presuppose a 
homunculus watching the theater, but only a collection of much more primitive modules, none of 
which has truly a “mind of its own”).  

This global workspace is a shared internal environment that the brain has evolved in order to 
facilitate the coordination and control of its otherwise largely autonomous and instinctually 
reacting modules. The global workspace is probably implemented as a network of long-range 
connections between different more specialized regions, connecting different parts of the neo-
cortex (most advanced part of the brain). Its function is similar to the one of working memory, 
keeping track of the presently active perceptions and thoughts. 

The global workspace hypothesis explains a number of characteristic features of access 
consciousness, in particular the fact that this consciousness has limited capacity and is sequential: 
you can be truly conscious or think about only one thing at a time. Subconsciously, on the other 
hand, your mind can be busy with many things in parallel (e.g. walking, talking, perceiving the 
surroundings, listening, feeling, …). The reason is that subconscious processes happen in different 
parts or modules of the brain, that are specialized e.g. in processing sounds, producing language, 
interpreting visual stimuli, or preparing emotional reactions. Because they have few connections, 
these modules can be active independently, without interfering with each other. However, for all 
these modules to be coordinated and controlled, their outputs must come together into a shared 
channel: the global workspace. Only one process can be active in that space at a given time. If 
more than one process would be active, activation from the one would spread and interfere with 
activation coming from the other, until both patterns of activation would merge and become 
indistinguishable. That is why people find it difficult to pay attention to more than one thing at a 
time. It explains phenomena such as not noticing a gorilla walking among people passing a ball: if 
full attention is already focused on the movement of the ball (meaning that observation of the ball 
fills up the global workspace), no attention (workspace) is left to watch out for gorillas or other 
incongruous phenomena… 

Another feature that the global workspace theory explains is voluntary control: the ability to 
consciously choose what you will do or think. According to Baars’s theory, the global workspace 
not only receives inputs from all subconscious processes, it also sends them its outputs. The 
activity in the workspace is “broadcasted” to all the modules of the brain, so that they can process 
it further and perhaps refine or complement its results. This requires a lot of activation. Therefore, 
if the global workspace comes to a certain conclusion (e.g. that a particular thought should be 
expressed in language, or that a particular action should be executed), the specific modules 
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responsible for implementing that decision (e.g. modules specialized in vocabulary, grammar and 
speech) will receive a strong input activation from the workspace that overrides whatever 
processes were going on in that module. That activation will be duly processed and passed on to 
further modules, until final execution of the decision. In that way, the global workspace is the final 
arbiter or decider, who determines what happens in the organism.  

Do not forget, however, that the large majority of mental processes remain subconscious, meaning 
that they are not broadcasted via the global workspace—unless something important goes wrong 
that demands full attention. Therefore, the feeling that all our actions or thoughts are controlled by 
consciousness (global workspace) is an illusion. This illusion is created by the fact that the origins 
of most actions or thoughts lie in subconscious processes that never reach the global workspace, so 
that it seems as if they do not exist. This illusion is at the basis of the fallacy of the homunculus 
controlling what is going on in the Cartesian theater. While the global workspace is similar to 
some degree to such a theater, what happens there emerges from many different subconscious 
inputs that are competing for dominance. The strongest inputs (e.g. caused by unexpected 
phenomena) tend to suppress the weaker ones, until one (or a combination) becomes strong 
enough to “fill” the workspace with activation. That input then temporarily determines what you 
are conscious of, giving it a privileged—but by no means unique—ability to influence your further 
thoughts and actions. 

Phenomenal consciousness 

The “hard problem” of consciousness 

While the function or usefulness of the global workspace or access consciousness is rather clear, 
the same cannot be said about subjective experience: why do we have any sensations or feelings 
when we perceive or think about some phenomenon? Why cannot we just process the information 
automatically or mechanically, like a robot or a computer? 

The philosopher David Chalmers has called this “the hard problem of consciousness”. According 
to him, the problem cannot be solved by traditional scientific methods. He argued this by 
conceiving a “zombie”. This is a being indistinguishable physically and psychologically from a 
normal human being, that behaves just as any other person, but that does not have any feelings 
while reacting to phenomena. Science per definition cannot distinguish a zombie from a non-
zombie, and therefore has nothing to say about the issue. Yet, Chalmers claims they are essentially 
different. 

From a cybernetic perspective, this is actually a false problem. According to Leibniz's principle of 
the identity of the indistinguishables, zombies by definition must be equal to normal people. Still, 
we must explain what subjective experience is and why we need it. 
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Subjective experience 

Subjective experience can be seen as the complete state of activation present in a person's brain at 
any moment. It is personal and unique in several fundamental aspects: 

• it is different for every person. Indeed, every person has a unique neural network, 
developed by biological growth and psychological experiences. Therefore, experience can 
never be accurately communicated to another person. Moreover, since symbols only cover 
a very small part of the meaning that resides in our mind, it also cannot be expressed 
symbolically.  

• it is different for any context, event or situation, because no two situations will be so 
similar that they exactly activate all the same neurons to the same degree. 

• it is different from one instant to the next, because it immediately changes into another 
state depending on new perceptions and the internal dynamics of spreading activation and 
“fatiguing” of neurons. 

• it is intrinsically “intentional” or “affective”: it is not a neutral, objective registration of 
what happens in the environment, but an evaluation of aspects that are potentially positive 
or negative for the person having that experience. Experience prepares the person for goal-
directed action, so as to be ready to counteract negative aspects (deviations from the 
desired or goal state), and exploit positive ones (opportunities or affordances).  

In conclusion, experience is fundamentally subjective, idiosyncratic and ineffable (impossible to 
be communicated through language). 

Feeling without action 

But why do we have experience even when we are passive, when nothing happens, when no 
actions are taken, or when no goal is (consciously) aimed at? What function can it have if it does 
not have any observable consequences? This is Chalmers's objection against a functionalist 
account of consciousness (functionalism means explaining mental phenomena in terms of the use 
or function they have for the organism). 

From our cybernetic perspective, in those seemingly non-functional cases the implicit goal of 
cognition is anticipation, i.e. being maximally prepared for anything that might happen. This 
implies letting activation spread from all presently perceived or conceived phenomena to whatever 
other phenomena that are associated with them (because they have to some degree co-occurred in 
the past and are likely to occur again). These other phenomena too will be evaluated in terms of 
associations and possible dangers or opportunities, albeit not as intensively as the phenomena in 
focus. We may assume that the associated phenomena will at least be primed for potential 
activation later.  
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As also argued by Jeff Hawkins, it is the whole of all these implicitly anticipated, associated 
phenomena that constitutes our “understanding”, experience, or feel of the phenomena in focus. 
Thus, even an at first sight passive state is characterized by plenty of active processes propagating 
and bootstrapping within the brain. Whenever something does change, externally or internally, the 
mind is primed for appropriate action. Without this subjective state of anticipation, the brain would 
have to start processing the new situation from scratch, thus being much less efficient in its 
reactions.  

A zombie without such subjective experience would be much more clumsy than a human being in 
reacting to any new situation—about as clumsy as present-day robots or computers, who lack this 
complex state of anticipation. In other words, a true zombie would behave distinguishably 
different from a real human being. The zombie thought experiment is actually inspired by a 
mechanical notion of a cognitive system that is purely reactive, without a complex internal state 
based on learned connections.  

What then is a “quale”? 

Consider the quale of “redness”, a classic example in the philosophy of mind.  

Note that the pure experience of red is actually quite unrealistic: we always see red in a context of 
other phenomena, such as a red rose, a traffic sign or a red Ferrari. Perhaps we could experience 
pure red only in a laboratory under controlled conditions, where all we see is undifferentiated red 
light, while all other stimuli, such as sounds, are suppressed. But even then, the phenomenon of 
neural fatigue would ensure that the experience of redness would weaken and eventually 
disappear, while making place for varying thoughts and imaginations. 

Even if we could remove it from any concrete context, the abstract quality of redness would still 
remind us of concrete phenomena that it tends to co-occur with, such as: blood, fire, roses, sunsets, 
a political party, danger signs, red traffic lights… All of these remembered phenomena would be 
to a smaller or larger extent primed by the view of red. 

For example, the association of red with fire, blood and the sun makes us experience red as a 
“warm” color, in contrast with “cool” colors, such as white and blue. This means that we implicitly 
expect a red room to be warmer than a blue room. Therefore, the thermostat might be put one 
degree lower in such a room without us perceiving it as colder (this is another example of feedback 
from anticipations to perceptions). The association of red with blood, fire, and traffic signs and the 
fact that it is relatively rare in nature moreover make us experience red as something important, 
that signals a potential danger. Thus, red tends to activate, to demand attention, in contrast with 
“calm” colors such as grey or green.  

It is the whole of these—stronger or weaker, explicit or implicit—anticipations that together can 
be said to constitute our “feel” or “quale” of what redness means. 
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Emotions 

Arousal 

The fuzzy state of neural activation defines our general “feeling” about a situation. An emotion is 
something more distinct and intense, with stronger, more focused activation that tends to spread 
through the body as a whole. This bodily state of activation is called arousal. It is typically 
characterized by higher blood pressure, faster heart rate, deeper breathing, increased sweating, etc., 
and is triggered by hormones such as adrenalin (epinephrine). This focused activation is similar to 
access consciousness, except that it appears controlled by the older, “reptilian” parts of the brain, 
and not by a global workspace or symbolic cognition.  

Emotions can be categorized in the first place by the amount of arousal that accompanies them. 
Most emotions are characterized by more arousal than normal, e.g. joy, fear, anger, ... However, 
sometimes the situation requires less arousal than normal, e.g. in situations of depression, 
boredom, or contentment.  

Emotions can be artificially induced by injecting the equivalent of adrenalin into the blood stream 
to create arousal. People who get such an injection (without knowing what it is) tend to interpret 
the resulting feeling cognitively as an emotion caused by some phenomena they witnessed. 
However, people witnessing the same phenomena (e.g. pictures shown by an experimenter) who 
got an injection with water do not feel any particular emotions about them. This is another 
example of the feedback between conception, perception and experience, or between mind 
(feeling) and body (arousal). 

Causes of emotion 

Emotions are triggered typically by situations with an element of surprise (i.e. failure of 
anticipation) that requires a change of arousal or activation level so as to adjust activities, plans 
and expectations.  

 Such situations can be positive, e.g. receiving a present or getting a promotion, resulting in 
feelings of pleasure, e.g. curiosity, happiness. The surprises can also be negative, e.g. 
failing for an exam or being in an accident, resulting in feelings of displeasure, sadness or 
pain.  

 Emotions can be about the future, e.g. hope, fear, or about the past, e.g. guilt, sadness, 
satisfaction.  

 Emotions can be social, e.g. pride, shame and love, or individual, e.g. self-confidence, 
depression.  

 Emotions can be triggered by something under the person's control, e.g. pride (if it went 
well) and guilt (if it went badly), or not under control, e.g. fear, depression, curiosity.  
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The properties of arousal, pleasure, control, time and social relations together are sufficient to 
classify and explain most emotions. However, like all subjective experience, the cognitive 
interpretation of a situation is unique for every individual, and dependent on earlier experiences, 
including cultural learning. This explains why even though most emotions are universal (e.g. as 
shown by facial expressions, such as smiles or expressions of fear or surprise, that are the same in 
all regions of the world), some aspects are dependent on culture (e.g. shame is a much more 
important emotion in collectivist cultures, like the Japanese, than in individualist ones, such as the 
European culture). 
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Bounded Rationality and Cognitive Biases 

Rationality and its limitations 

In the science of economics, the fundamental assumption is that human beings are intrinsically 
rational: they try to make the best possible decisions whenever they are confronted with a 
problem in which they have to choose. This makes sense intuitively: why would anybody want to 
make a less than optimal choice? It also makes sense from the point of view of evolutionary 
epistemology or evolutionary psychology: if certain types of individuals would have a tendency to 
systematically make less good decisions, they would lose the competition with more rational 
individuals, and thus eventually be eliminated by natural selection. Therefore, we may assume that 
over the millions of years that evolution has had to shape our brain, it would have produced a very 
efficient decision-making mechanism, which carefully weighs the pros and cons in order to come 
to a near optimal decision. 

On the other hand, we all know that people sometimes make stupid mistakes, are guided more by 
emotion than by reason, and often behave plainly irrationally, going so far as to engage in 
behaviors (such as being addicted to gambling, overeating, starting a war, or smoking) that 
everybody knows to be harmful. Such deviations from assumed rationality must be investigated 
and explained. Several hypotheses have been proposed.  

Bounded rationality 

This concept was proposed by Herbert Simon, who was not only one of the founding fathers of 
cognitive science and artificial intelligence, but a Nobel prize-winning economist. Inspired by his 
research in problem solving and information processing, Simon noted that most real-world 
problems are simply too complex for us to find optimal solutions.  

Example: suppose you want to buy a car. There are dozens of different models on the market, with 
different features, qualities, prices and limitations. You can never know all the complexities that 
go into building a car, nor what will happen with the car in different circumstances, such as during 
a crash, in wintertime, in very hot weather, when you suddenly need to brake, when you are 
carrying a lot of luggage, etc. You also do not know in which precise circumstances you will use 
the car, and therefore you cannot say for sure whether comfort is more important than power, or air 
conditioning more important than size of the trunk. Even if you had all that information about all 
the potential car models, you would never be able to design a decision model that takes all these 
data and criteria into account and that allows you to calculate which car optimally satisfies all 
these different criteria.  
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Simon therefore proposed that when making decisions, people do not optimize (choose the best 
possible option), but satisfice (choose an option that is good enough to satisfy them, but is 
probably not the best). However, this still does not tell us how people really make a decision. It 
also does not explain clearly irrational decisions, such as starting to smoke, that are not only not 
optimal, but far worse than satisfactory. 

Cognitive heuristics 

Inspired by Simon’s work on problem solving and cognitive psychology, Tversky and Kahnemann 
studied human limitations on rationality in much more detail, coming up with a variety of 
systematic deviations from optimality that they called “cognitive biases”. Their explanation is 
rooted in the concept of heuristic, which we defined as a rule of thumb that people use to simplify 
problem solving when the search space is too large to be systematically explored. Heuristics are 
not guaranteed to find optimal solutions, but because they make search much more efficient, they 
help you to find acceptable solutions ("satisficing") in a reasonable time.  

As we noted, most heuristics are very domain-specific, and therefore it is difficult to derive a 
general theory of biases or limitations on rationality from the notion of heuristic. However, some 
heuristics are more general in scope, and thus may explain common mistakes that people make. 
For example, Tversky and Kahnemann proposed the representativeness heuristic, which posits that 
you can infer the properties of a category of things from the properties of a representative sample 
of that category. 

Example: suppose you are choosing a car, and considering buying a Honda. You ask your 
neighbor, who owns a Honda, about his experience with that car. The neighbor tells you he had a 
serious problem with the brakes last year. Following the representativeness heuristic, you may 
infer that Hondas are not safe, and therefore that you should buy a different brand. However, it is 
clear that this particular problem with your neighbor’s car may be pure bad luck, and not 
representative for Hondas in general. However, given that you can never get to know all 
experiences of all Honda owners, you must simplify the problem, and at a certain moment make a 
decision based on the limited sample that you know. 

The problem with heuristics and the notion of bounded rationality is that they are still rooted in the 
symbolic view of cognition, which tends to see all decision making as based on conscious 
reflection and manipulation of various explicit concepts or symbols. As we know from 
connectionist models, most cognitive processes are subsymbolic and unconscious. This means that 
they do not use general and explicit procedures as implied by the notion of heuristic, but are based 
on activation spreading along learned associations. Let us further examine this connectionist 
mechanism to see which biases it implies. 
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Towards a connectionist theory of cognitive biases 

The basis of connectionist models is the mechanism of Hebbian learning or its more sophisticated 
implementation of delta learning, which strengthen connections that made good predictions, while 
weakening those that made wrong predictions. It can be shown that through delta learning the 
strength of a link A → B will eventually, after many experiences of correct or incorrect 
predictions, converge to the conditional probability P(B|A), i.e. to the proportion of cases in which 
A was effectively followed by B.  

Example: assume there were 150 cases in which A was followed by B, and 50 cases in which B 
did not follow, then the link strength of A→B becomes equal to P(B|A) = 150/(150 + 50) = 0.75  

If this is correct, the learning mechanism appears to be accurate or unbiased: its results correspond 
to the objective probabilities as experienced by the agent. This means that, although the neural 
network will of course make mistakes in its predictions, on average these mistakes will cancel each 
other out: it will make as many mistakes in the one direction (expecting B, when B does not 
happen) as in the other direction (expecting that B will happen, when it does not).  

Definition: a cognitive bias is a systematic deviation from the correct average. This means that the 
average estimate of what is expected to happen will converge to a value that is either significantly 
higher or significantly lower than the average of what truly happens over an extended period. 

Example: in the above case, there would be a bias if link strength (A→B) = 0.85 (overestimate of 
the probability of B following A), or if link strength (A→B) = 0.5 (underestimate of the probability 
of B following A).  

Variability of the environment 

A first source of bias is that Hebbian/delta learning needs time to converge to the correct average. 
If the agent only experienced a single episode of A followed by B, then the average probability as 
yet is 1. However, immediately setting the link strength to 1 seems overconfident, since it is 
dangerous to deduce such certain prediction from a single episode: it is unlikely that because 
something happened once, it will always happen in the same circumstances. That is why Hebbian 
or delta learning only makes a relatively small adjustment to the strength of a link with each 
learning experience, as measured by the learning constant c.   

The learning constant moreover takes into account the fact that averages may change over time, 
e.g. that the probability of B following A may increase because of changed circumstances. For that 
reason, recent reinforcements of a link contribute more weight than older reinforcements, but not 
enough weight to immediately erase the effect of older experiences (which include experiencing 
no association at all between A and B). This principle may be illustrated by the recency effect: the 
last items on a list are remembered better than the preceding ones.  
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On the other hand, for a single new experience the adjustment (say 5%) may be too low: perhaps 
this experience is just the first occurrence of many, and if this occurrence is important (e.g. a great 
danger or opportunity) failing to anticipate the next one because of a too weak adjustment may be 
fatal. That is why the cognitive system tends to pay special attention to new or unexpected events, 
which may signal a drastic change in the situation. This may be illustrated by memory biases such 
as the primacy effect, which—as a complement to the recency effect—notes that people remember 
the first items from a list better than the following ones, and the von Restorff effect, which notes 
that an item that stands out (e.g. because of being marked in a different color) is also remembered 
better. 

Hyperbolic discounting 

The variability of the environment can be used to explain one of the most studied biases: 
hyperbolic discounting. This means that when people have to choose between two rewards they 
tend to prefer a smaller one that comes sooner (for example, receive $100 now) to a larger one that 
comes later (for example, receive $200 in six months).  This makes sense: the longer you wait, the 
larger the chance that some unknown environmental variation or disturbance would occur that 
prevents you from getting the expected reward (for example, the person who promised you the 
$200 changes his mind, dies, or loses all his money).  

What is less obvious is that this “discounting” (gradual reduction) of the value of a reward over 
time happens more quickly in the immediate future than in the farther-away future. For example, 
when offered the choice between $100 in a year, and $200 in a year and half, most people would 
prefer the $200 option, even though the interval between the options is just as long as in the first 
situation, and therefore the probability of some disturbance intervening in between would seem to 
be just as large. But this reasoning assumes that the probability of unpredictable disturbances 
(uncertainty) would remain the same. In a truly variable environment, not only situations but 
probabilities can change in unexpected ways. The safest assumption is that whatever uncertainty 
you have about the near future, this uncertainty (i.e. the probability of something going wrong) 
will only get bigger in the farther-away future. Therefore, opportunities in the immediate future are 
more reliable, while opportunities in a farther-away future are intrinsically much more difficult to 
estimate. Therefore you might as well prefer the very uncertain $200 in 18 months over the almost 
as uncertain $100 in 12 months. 

Utility more important than probability 

 Another important source of biases is that learning mechanisms are not there just to estimate the 
conditional probabilities of events (Hebbian learning), but the average reward or punishment 
received (reinforcement learning). For an agent trying to achieve its goals of survival and 
proliferation in an uncertain environment, the primary function of the cognitive system is to 
maximally achieve those goals, not to accurately predict what will happen. From the evolutionary 
and cybernetic perspectives the most important objective is control. Prediction is useful only 
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insofar as it helps achieve control. Therefore, the cognitive system can afford to make systematic 
errors in prediction as long as it minimizes its errors in control. Maximizing control means 
maximizing the expected reward, value, or utility achieved by actions. This means that we can 
expect a cognitive bias towards the outcome with the highest average utility. This is normally the 
outcome that would receive the strongest accumulated reward and the weakest accumulated 
punishment.  

We can divide this bias in two subsections:  

1. avoiding the danger of strong punishment. This leads to the biases of paranoia: people 
tend to overestimate the probability of serious external threats or dangers being realized. 

2. seeking the opportunity of large reward. This leads to the biases of optimism:  people tend 
to overestimate their own ability to achieve positive outcomes. 

Together, they explain why people tend to behave like “paranoid optimists” [Haselton & Nettle].  

Examples of paranoid biases:  

• Phobias are exaggerated fears for potentially (but usually not so) dangerous things, such as 
spiders, snakes, and heights. The probability of falling from the grassy border of a high 
cliff is not larger than the probability of falling from your lawn into your flowerbeds—
both of which are very small. Yet, people will not hesitate walking just next to the 
flowerbeds, while they may start to panic when coming anywhere near the edge of the 
cliff. The reason is simply that the punishment in case of falling from a cliff is immensely 
greater than the punishment in case of falling into a flowerbed. Avoiding the very small 
risk of this happening is worth the relatively small effort that is needed to stay far away 
from the edge. This fear of heights makes perfect rational sense, but the same exaggerated 
reaction tends to appear in situations where the objective risks are so small as to be 
negligible, like in fear of flying, or fear of speaking in public.  

• The negativity bias is a tendency for people to pay much more attention to bad news or to 
potential signs of danger, than to good news or signs of opportunity. For example, the 
news that 100 people died in a fire will attract much more attention than the news that life 
expectancy increased last year with a month, even though the latter implies that many 
more than 100 people who would otherwise have died now survived. This makes sense 
because of the utility bias: ignoring the danger of dying in a fire may cost you much more 
dearly than ignoring the fact that people live longer now. In the first case, there is 
something you may potentially do to avoid the danger. In the second case, there is not 
much that you yourself need to do.  

• Loss aversion refers to the observation that people would rather miss the opportunity to 
gain $200 than run the risk to lose $100, even when both events have the same probability. 
Losing something is experienced as more negative than gaining the same thing is 
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considered positive. In another experiment, people may not want to pay more than $1 in 
order to get a coffee mug, but once they have it, they will not sell it for anything less than 
$2: the cup becomes more valuable for them simply because they now own it. This may be 
explained by the fact that a loss, because it is negative, is considered a priori more 
important than an equivalent gain, which is positive. 

Examples of overconfidence biases: 

The negativity bias in emotions is compensated by something called the “positivity offset”: 
generally people tend to feel good about their situation, and to be optimistic about the future. 
When people are asked to estimate the probability of getting good outcomes for themselves (e.g. 
succeeding in an exam, or answering a question correctly), their estimate tends to be higher than 
the real outcome. Moreover, a large majority of people think that they are smarter, nicer, or 
happier than the average person, while objectively less than 50% should fall into that category.  

While these misjudgments seem rather innocent, the bias for overoptimism can lead to dangerous 
behaviors, as exhibited by the gambling addict who is convinced that next time he will win big, the 
skier who takes exaggerated risks, or the smoker who believes that it is only the others who will 
get lung cancer.  

A plausible explanation for such overconfidence is that it motivates people to actively seek 
opportunities and overcome problems, even when objectively their chances of success are only 
small. If the cost of being active is less than the cost of potentially missing out on a great 
opportunity because you thought that it was anyway not worth the effort, then the bias goes 
towards assuming that activity will be successful. It is sufficient that on average being confident, 
and therefore active, gets bigger rewards than being pessimistic, and therefore passive—even when 
the pessimists tend to be more accurate in their predictions.      

An example that combines paranoia and overconfidence is the observation that most people feel 
much safer driving a car than sitting in a plane, even though innumerably more people die in car 
accidents than in plane crashes. The reason is that the driver of the car feels in control and 
therefore tends to assume he will be able to deal with any problems. Passengers in a car feel 
somewhat less safe, because they have no control, but still safer than plane passengers. Planes are 
particularly frightening because plane crashes often appear in the news because of the negativity 
bias—unlike car crashes, which have typically fewer victims, and are intrinsically less newsworthy 
because they are so common. Moreover, fear of flying may be inspired by fear of heights, which is 
a general instinct. 

Immediate context more important than overall statistics 

Another important source of biases is the fact that cognitive processes function on the basis of 
spreading activation: concepts, memories and experiences become activated depending on how 
closely connected they are to the immediate context, i.e. the cognitive items that are being 
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activated (by thought or perception) at this moment, together with the ones that were recently 
activated so that a low level of activation or priming remains, making it easier to activate them 
again. This means that what comes most easily to mind are the things that are most directly 
associated with the present situation: things said, observed, remembered or considered now or in 
the recent past. These are also the things that seem subjectively most important or most probable.  

On the other hand, probability is calculated formally as the total number of times some 
phenomenon occurred divided by the total number of times that this phenomenon could have 
occurred. For example, the probability of a coin falling with heads up is 50%, because if you had 
tossed a coin 100 times, it would have produced “heads” about 50 times. Calculating such a “base 
rate” would require an exhaustive search through long-term memory of all known occurrences of 
that event (e.g. remembering all the times you witnessed a coin being tossed, and the outcomes of 
all these events). Given the limitations of long-term memory, this is obviously not possible. 
Moreover, as we noted when discussing the learning constant, there is no guarantee that because 
something happened with a certain frequency in the past, it would happen with the same frequency 
in the future.  

Therefore, the cognitive system implicitly relies on a “context-dependency heuristic”, which 
assumes that recent or easily remembered occurrences are more important than the long-term 
“base rate”. It does this by first activating those immediate memories, and using them as a basis for 
further propagation of activation. At the same time, it tends to ignore or neglect the base rate (this 
is called the base rate fallacy). 

Examples of contextual biases: 

• The anchoring bias can be demonstrated by a little experiment in which people are asked to 
randomly choose a number between 0 and 1000, and write it down. They are then asked to 
estimate the year in which the Mongols first invaded Europe. It turns out that the answer they 
give is strongly correlated with the random number: people who chose a smaller number tend 
to guess an earlier date for the Mongol invasion. Since the two numbers are by definition 
independent, this is clearly irrational. The explanation is that the random number remains in 
short-term memory as an “anchor” from which activation is propagated in order to build an 
estimate. 

• The conjunction fallacy may be illustrated by an experiment in which people are given a 
description of an independent, intellectual and politically engaged woman. They are then 
asked to estimate the probability that this woman would be: (a) a bank teller; (b) a bank teller 
and active in the feminist movement. They typically estimate a higher probability for case (b), 
even though all (b) cases are also (a) cases, and therefore the probability of (b) cannot be 
larger than the one of (a)! The larger base rate (frequency of occurrence) of (a) is simply 
ignored. The reason is that the description of the woman has strong associations with the 
profile of a typical feminist, but not with the profile of a typical bank teller. Therefore, more 
activation propagates to (b) than to (a). 
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• The confirmation bias is the tendency to pay special attention to information that confirms 
your preconceptions, while neglecting information that contradicts them. For example, a racist 
will especially notice all news reports in which a crime was perpetrated by someone from 
another race, considering it as evidence that confirms his prejudices, and ignore most of the 
crimes performed by someone from the same race. The reason is that the preconception primes 
the cognitive system to quickly recognize situations that fit in with the preconception. In the 
racist example, there exist strong associative links between the concepts of “other race” and 
“crime”: whenever the one gets activated, a little activation will spread to the other, priming it 
to immediately become fully activated if further evidence appears. The ensuing co-activation 
of the concepts will further strengthen their association because of Hebbian learning. No such 
priming occurs with the concept of “own race”, making the effect of additional evidence here 
much weaker. 

Conclusion 

Given the intrinsic uncertainty and complexity of the world, it is clear that cognition cannot in 
general make optimal decisions or perfect predictions. Therefore, rationality is bounded. However, 
we may assume that evolution would at least have avoided a cognitive system that makes 
systematic mistakes. Yet, many dozens of cognitive biases have been observed in a variety of 
psychological experiments and social or economic situations. (For an extensive list, see 
http://en.wikipedia.org/wiki/List_of_cognitive_biases). We have proposed a number of plausible, 
general explanations for such systematic deviations from rationality.  

Most generally, cognition uses heuristics to simplify complex problems, thus systematically 
ignoring factors that are difficult to establish or process, such as base rates, in favor of more easily 
available data, such as contextual cues. Moreover, what seems to be most rational, such as 
calculating probabilities on the basis of formal statistics, may in practice not be the most useful for 
survival. When long-term fitness is taken into account, paying special attention to serious dangers 
or remaining confident in spite of low probabilities of success may be the best general strategy, 
even when this results in a “wrong” estimate of probabilities.  

As a practical guideline, it seems best to be maximally aware both of your natural cognitive biases 
and of the formal rules of statistics. Then you can use either the one or the other (or a combination 
of both), depending on what you know about the situation, in order to make decisions. Sometimes, 
the situation is too ill defined or variable for statistical rules to apply, and then you can better rely 
on your intuition. In other cases, the laws of probability apply unambiguously, and you can decide 
without hesitation, e.g., that being a bank teller is more probable than being a feminist bank teller. 
Even when statistical rules are not readily applicable, however, it is worth being aware of your 
cognitive limitations, and e.g. look systematically for contradicting evidence in order to counter 
the confirmation bias, or check the statistics about plane crashes before worrying about boarding 
that plane… 
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Individual Differences 

Differences in cognitive competence 

It is well known that some people achieve much more on the cognitive level than others: they are 
able to tackle very complex problems, or exhibit unusual feats of creativity. There are plenty of 
examples of people that are considered to be a scientific, artistic or political genius: da Vinci, 
Einstein, Edison, Mozart, Caesar, Gandhi... Apparently their cognition functions better than the 
one of average people. On the other hand, some people have great difficulty with a normal level of 
cognitive functioning, e.g. mentally retarded people or people with the Down syndrome. Given 
that we all have essentially the same brain organization and basic cognitive abilities, what causes 
these differences in cognitive performance? Let us review the main components of cognitive 
ability. 

Expertise 

A first important component is the amount of specialized or advanced knowledge, or what may be 
called expertise. As we saw when discussing AI, intelligence is useless without plenty of 
knowledge. Learning takes a lot of time, effort, and undergoing a variety of experiences. Not only 
the quantity, but also the quality of the experience is important: the information input must be 
good. This implies good education and training, the reading of good books, etc. It is estimated that 
to become an expert in any advanced field (e.g. painting, physics, politics,  chess…) typically takes 
at least ten years of hard work. This requires at least sufficient motivation, discipline and patience 
to achieve it. 

Intelligence 

A more general component of cognitive competence, in the sense that it does not require specific 
knowledge, is what is conventionally known as intelligence, i.e. the general ability to solve 
problems. A well-known way to conceptualize the difference between knowledge-dependent and 
knowledge-independent factors is Cattell's distinction between "fluid" and "crystallized" 
intelligence. Crystallized intelligence is the result of the accumulated knowledge and experience 
that we bring to tackle common, concrete problems. It typically increases unrestrictedly with age. 
Fluid intelligence is the quickness and versatility of thinking that is needed to solve the most 
abstract, novel problems. Fluid intelligence increases during childhood, but reaches a plateau by 
the end of puberty (around 16 years) and tends to decrease with older age. 
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IQ scores 

Intelligence is normally measured by IQ tests. 
These combine a variety of multiple choice 
questions on different subjects and tasks 
domains. While neither of the questions on its 
own gives a reliable estimate of intelligence, in 
the sense that they all require some specific 
expertise, the more questions there are in the 
test, and the more diverse they are, the better 
the total score distinguishes more from less 
intelligent individuals. This is because highly 
intelligent individuals typically have gathered a 
very broad experience, and tend to be better 
than average in practically any cognitive 
domain. The most reliable tests of fluid 
intelligence require anticipation of abstract 
patterns. A classic example of such a test is 
called “Raven's Progressive Matrices”, in 
which a pattern of abstract pictures is shown 
and the subject needs to choose which other picture must be added (see picture). 

To get a reliable IQ score, multiple IQ tests must be taken, since even professionally administered 
IQ tests are roughly only 95% accurate. The average of multiple tests, usually at least three, taken 
within one year, is considered that person's "true" IQ score.  

IQ tests are normally calibrated 
so that the average intelligence 
level of the population is 100 
and the standard deviation 15. 
The distribution of scores 
around the average has the bell-
shape of the well-known Gauss 
curve, as depicted below. This 
means that about 68% of 
people fall within one standard 
deviation from the average, i.e. 
in the range 85-115, about 95% 
in the range 70-130, and about 
99.7% in the range 55-145. In 
other words, less than 0.15% of the people have an IQ higher than 145. 
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IQ and success in life 

The scores on IQ tests are obviously not perfect, but they are in general good indicators of future 
performance, including success in education, success in professional life, eventual level of income, 
and even life expectancy. The latter can be explained by the fact that more intelligent people know 
more about health, understand better what they should do to remain healthy, and manage better to 
foresee and deal with the type of dangerous situations that lead to accidents or illness. In fact, IQ is 
a better indicator of future life chances than any other psychological measure. This fits in with our 
general philosophy that cognitive ability is what allows an agent to cope with the problems it 
encounters, and thus better survive and thrive in its environment. 

Socially, IQ is very important in the job market: the most difficult, important and best-paid 
professions, such as manager, doctor, lawyer, engineer, researcher, etc. typically require a high 
minimum intelligence level, and the higher the IQ, the higher the level a person is likely to achieve 
within the profession. As technologies become more complex and the demands for productivity 
increase, even less well-paid jobs demand increasingly advanced cognitive skills. This may explain 
why in advanced societies there is a tendency towards the creation of a class of long-term 
unemployed, who simply cannot find a job whose intellectual demands are in line with their 
(limited) abilities. In addition to unemployment, people with a low IQ are also more likely to fall 
prey to a variety of social problems, such as poverty, drug addiction, criminal behavior, and 
becoming a single mother.  

It has further been observed that the economic development of a country or region is strongly 
correlated with its average IQ level: the national IQ appears to be highest in the states that are 
wealthiest (mostly Western) and/or fastest growing (such as China and South-East Asia). As a 
rough approximation, an increase of 10 points in mean IQ corresponds to a doubling of the per 
capita GDP. 

Origin of IQ differences 

Differences in IQ are dependent to an important extent on genes or inheritance. This was measured 
by comparing the IQ of identical twins (who are genetically identical) raised separately (e.g. 
adopted into different families). Their difference in IQ is on average smaller than the difference 
between non-identical twins (who are genetically different) that were raised together. However, IQ 
is also strongly influenced by the socio-economic environment. This is spectacularly illustrated by 
the Flynn effect: the on-going increase in IQ of the population. 

The Flynn effect 

In the developed countries (for which enough data are available), average IQ has been increasing 
with about 3 points per decade over the last century (Flynn). This means that people now are on 
average some 20 IQ points smarter than people in 1940. People with a perfectly normal IQ of 90 
then would according to present norms merely score 70, i.e. as having a mild form of mental 



- 117 - 

retardation! Since people now are genetically almost identical to the people in 1940, this means 
that the (important) changes in environment must be responsible for this increase. 

The probable explanation is that higher intelligence results from the presently better life 
circumstances:  

 better health care (less serious illnesses that can delay or damage brain development) 

 better nutrition (more proteins, fats, vitamins, minerals such as iron and iodine, etc. to 
build and support the brain) 

 higher levels of education (although the direct effect of schooling on IQ seems relatively 
small).  

 higher cognitive stimulation by an increasingly complex environment 

This last factor may be particularly important. Indeed, our everyday world offers ever more 
information to be processed ever more quickly—in the form of advertisements, news items, 
magazine articles, movies, television, computer games, Internet, etc.—and this requires ever more 
activity from the brain, thus “training” it to become more intelligent. Another plausible factor 
contributing to intelligence increases is that families have become smaller: with fewer children, 
parents have more attention and resources to invest in each child. The effect on intelligence is 
confirmed by the observation that first-born or single-born children are on average some 2 to 3 IQ 
points smarter than second or third-born children, who had to compete with their siblings for 
parental attention. 

Creativity 

Creativity is another general aspect of cognitive competence. However, it is more difficult to 
measure than IQ. Indeed, who is judge that some solution is more creative than another one? 
Sometimes creativity is measured by divergent thinking skills. Convergent thinking refers to 
systematic problem solving that converges on the one correct solution. This is typically measured 
by IQ tests. Divergent thinking, on the other hand, is seen in something like brainstorming, where 
many different possible approaches are proposed. Divergent thinking can be measured by the 
number of different “solutions” generated in a given time span to an open-ended question such as: 
how many uses can you think of for a brick? 

It turns out that creativity is correlated with IQ, but not exactly the same. A minimum IQ of about 
140 seems necessary for exceptional achievement, such as the one exhibit by creative geniuses like 
Einstein or da Vinci. For higher IQs, however, there is no clear correlation with creativity. 

Giftedness 

“Giftedness” is defined as a person’s potential for exceptional mental achievement. It can be seen 
as a combination of unusually high intelligence, creativity, and motivation to make cognitive 
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advances (in domains such as art, science, literature, politics, etc.). Unfortunately, this potential is 
often not realized. This is in part because gifted people need support from their social 
environment, which they don't always get because they are not being recognized as gifted. Failure 
to realize the potential can also happen because gifted people can be emotionally insecure, and 
therefore doubt so much about their goals and abilities that they never manage to realize what they 
are capable of. 

A gifted person exhibits a typical personality profile, characterized by the following traits: 

• Cognition: excellent problem-solver, makes unusual associations, original ideas, vivid 
imagination, fast learner, good memory 

• Feelings: sensitive, intense, passionate, “overexcitable”, good sense of humor 

• Motivation: ambitious, risk-taking, very curious, broad interests, persistent, perfectionist 

• Social relations: non-conformist, autonomous, feels different from other people, feels 
empathy and compassion for others, has strong sense of ethics and justice 

The g-factor 

The g-factor (“g” stands for “general”) is the most general factor underlying intelligence, IQ and 
all forms of cognitive ability. It seems in practice equivalent to what we have called fluid 
intelligence, and is probably the basis for giftedness.  

The g-factor is derived statistically, as the factor that all tests of mental ability have in common. 
Such a factor exists because different test scores are all positively correlated, including tests of 
apparently very different abilities such as spatial insight, verbal fluency, general knowledge, extent 
of vocabulary, technical understanding, mathematical abilities, abstract reasoning, pattern 
recognition, creativity (divergent thinking), and even so-called “emotional intelligence”. In 
practice, this means that someone who has a more (or less) than average creativity is also likely to 
have a more (or less) than average vocabulary, spatial insight, verbal fluency, etc. The reason is 
that all these abilities, while measurably different, make use of a common core, the general 
cognitive ability or g-factor. If that factor is stronger (weaker) than average, then most of these 
abilities will also tend to be stronger (weaker) than average. 

The g-factor can be interpreted as a measure of information processing efficiency: how well does 
the brain handle incoming information? It is positively correlated with a number of physical-
psychological characteristics:  

• brain volume 

• energy efficiency of the brain (more intelligent people require less energy to perform a 
given task once they have had a little training with it).  
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• size of working memory  

• reaction speed (more intelligent people react more quickly on very simple tasks, such as 
pushing a button if a word they are shown represents an animal) 

This observation has led to a number of neural hypotheses to explain the differences in g between 
individuals, looking for physical characteristics of the brain that may lead to increased efficiency: 

• glia: these support cells that bring energy to the neurons have been found to be more 
numerous in Einstein’s brain 

• myelin: this fatty substance that provides electrical insulation around neural connections 
(axons) may explain why electrical signals propagate better in some brains. Together with 
the glia, myelin occupies a sizeable part of the brain, possibly explaining why more 
efficient brains also tend to be larger. 

• neural plasticity: easier formation of connections (synapses and axons) between neurons; 
mice genetically engineered to develop neural connections more quickly appear to be 
behave more intelligently. 

• metabolism: more efficient energy production, e.g. because of more small blood vessels in 
the brain; fluid intelligence decreases in old age when atherosclerosis makes blood 
circulation more difficult  

The hypothesis of neural propagation depth 

For my own hypothesis about the origin of g, I start from the general connectionist interpretation 
of cognitive processes, which is based on activation propagating from neuron to neuron across 
synapses. This spreading activation process dissipates much energy and is prone to making errors. 
Therefore, we may assume that activation weakens with each crossing of a synapse. We have seen 
that propagation stops when activation drops below the threshold for activation of the neuron. This 
leads us to the following. 

Definition: Propagation depth is the average number of steps a coherent propagation process 
(train of thought) takes before it stops 

Let us applies this to the process of problem solving, which we have introduced as the essence of 
intelligence. A problem is represented by an initial combination of concepts, its solution by a final 
combination of concepts that satisfies certain criteria. Problem solving is then the propagation of 
activation along associations between concepts so as to reach the final state from the initial state. 
For example, the problem that a baby cries repeatedly might be solved via the following, 6-step 
association path:  

baby cries (initial state) → illness → allergy → food allergy → fish allergy → fishless diet 
(solution) 
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Assume now a brain characterized by a lower propagation depth of 3 steps. This would result in 
the following train of thought:  

baby cries → illness → allergy? (process stops, but no actual solution found)  

 

The figure illustrates the activation spreading over a network of associated concepts. Highlighted 
nodes represent activated concepts, dotted lines represent associations, and solid arrows represent 
the amount of activation propagated over an association (thicker arrows = more activation). 
Because of decay, activation decreases with subsequent steps in the propagation process. The 
diagram above represents a network with relatively high propagation depth, where six concepts in 
sequence get activated. In the diagram below, there is much more decay so that activation stops 
propagating after three steps.  

This illustrates how a higher propagation depth, as could be expected in more efficient brains, 
would lead to better problem-solving abilities and better cognitive performance. Assume that 
giftedness is proportional to the g-factor, and that g is proportional to propagation depth D.  



- 121 - 

Higher D implies: 

• more problems can be solved because of wider propagation of activation 

• larger working memory, because more concepts can remain simultaneously activated 

• more “far-fetched” associations (concepts are combined that have no direct associative 
connections) 

• higher ability of abstraction (ability to classify apparently very different phenomena into 
the same category by noticing what they have in common) 

• stronger co-activation of remote concepts and therefore better Hebbian learning of new 
association betweens these concepts, and as a result: 

•  better long-term memory for these associations 

These implications of higher propagation depth can also explain other traits of gifted people in the 
domain of imagination and feeling: 

• Perceptual sensitivity: stimuli propagate better from senses (perception) to consciousness 

• Emotional intensity: perceptions and conceptions elicit stronger feelings 

• Vivid imagination: conceptions more easily activate detailed perceptual memories 

• Empathy: imagining or feeling oneself in the other’s place becomes easier for high D, 
leading to a stronger sense of compassion, and therefore of justice. 

Interaction between intelligence and motivation 

The psychologist Csikszentmihalyi observed that people seek “flow” in their activities. Flow is a 
pleasurable, happy, focused state, characterized by a feeling of being in control, and of advancing 
smoothly towards one's goals. It requires a balance of challenges (problems, task difficulty) with 
skills or competences. When the challenges are higher than the skills (i.e. the task is too difficult), 
the person will feel stress and anxiety. When the challenges are lower than the skills (i.e. the task 
is too easy), the person will feel boredom.  

From this perspective, to be happy in your activities, you should find the right challenge level: not 
too easy, not too difficult. However, as people become more skilled because of learning and 
experience, they need to raise their challenges to remain satisfied. Therefore, people will gradually 
take on more ambitious tasks (e.g. more advanced studies, jobs with more responsibility, more 
complex works of art, more advanced chess levels, etc.).  

Gifted people are skilled at information processing and problem solving. According to the flow 
logic, this implies that they will be ambitious, perfectionist, and seek difficult challenges. They are 
also skilled at learning. This explains their intense curiosity and wide range of interests. As such 
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they will progress quickly in any domain that they choose to explore. The more progress they 
make, the more they will be motivated to go even further, and tackle even more complex 
problems. Thus, their brain will be ever more stimulated to develop itself.  

Unfortunately, the same positive feedback cycle applies to people with a low intelligence level, but 
now working in the opposite direction. When they notice that they are not doing as well as the 
others in common challenges (e.g. when studying at school), they will seek easier challenges (e.g. 
drop out of school, or choose an easier study domain). This will in turn reduce their cognitive 
stimulation. Lower stimulation (less or easier problems to solve or information to process) means a 
less active brain, and therefore a reduced training of the neurons, synapses, glia, blood vessels and 
other active components of the brain. The result is likely to be a reduction of their propagation 
depth, g factor, or IQ relative to people of average IQ.  

This mechanism has recently been proposed by Dickens and Flynn (2001) to explain why there is 
at the same time such a strong correlation between IQ and genetic predisposition (as illustrated by 
twin studies) and such a strong effect of environmental stimulation (as illustrated by the Flynn 
effect). According to this hypothesis, small differences in IQ determined by the genes are 
amplified by the positive feedback sketched above: more intelligent people tend to seek more 
cognitively complex and stimulating environments, while less intelligent people do the opposite, 
thus further increasing their initial difference in intelligence. The conclusion must be that even 
intellectually disadvantaged people should be maximally stimulated to develop themselves 
cognitively, albeit in such a way that they remain in “flow”, i.e. don’t become anxious because the 
tasks are intrinsically too difficult for them. 

The cybernetic paradigm suggests an efficient method to promote flow: concrete and immediate 
feedback, so that neural mechanisms that produce good decisions are reinforced, and those that 
produce bad decisions are suppressed. The immediacy of such feedback means that there is no 
need to sustain activation over prolonged periods in working memory, which is typically a heavy 
burden on the brain because of the mechanisms of decay and fatigue. An example of a very 
efficient environment to produce such flow is a computer game: every action by the player 
produces immediate and clear feedback, keeping the attention focused, and helping the player to 
improve his or her performance. Moreover, games normally have many different “levels” of 
difficulty, so that both novice and expert can find the right level of challenge. It is precisely the 
continuing flow experience that makes computer games so addictive, keeping people motivated to 
play it again and again. However, if the game would be designed so as to promote core cognitive 
skills, it could be turned into a very powerful educational tool that would stimulate even low-IQ 
people to maximally develop their intellectual capacity.  

Problems of the gifted 

Being exceptionally intelligent does not only have benefits. In their relations with others, highly 
gifted individuals tend to question authority and accepted wisdom, as they prefer to think for 
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themselves. This may obviously get them in problems in society, as illustrated by Galileo’s 
conflict with the Catholic Church. They also often feel alienated or out of step with other people. 
This follows from the flow model: assuming that the cognitive skills of a gifted person are much 
larger than the skills of a “normal” person (i.e. of average intelligence), a typical interaction or 
conversation between the two will result in anxiety for the normal person, who cannot follow half 
of what the other says, and in boredom for the gifted person, who already has anticipated most of 
what the other has to say.  

Another common problem is that the gifted may not be recognized as such: they have a too broad 
range of interests, and thus do not fit the “expert” stereotype that people have of smart people as 
being exceptionally good in specialized technical domains such as mathematics, chess, 
engineering, ... Because of these stereotypes they rarely recognize themselves as gifted, and 
therefore usually do not understand why they seem to be so different from others. They often feel 
lonely or misfit, and tend to accept dismissive views of others. Other common problems are that 
because of their very wide range of interests they do not know what to focus on, that they can be 
so perfectionist that they never finish their work, that they have unrealistic expectations of others, 
and that they can be emotionally and physically too sensitive. While psychologists have found no 
real evidence for the widespread notion that genius and madness are related, these common 
problems of the gifted may explain why they are sometimes perceived as such… 
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Collective cognition 

Collective intelligence 

Cognitive superagents 

We have defined cognition as a systems phenomenon. This means that it does not need to remain 
limited to individual agents. An organized collective of agents, such as a society, an organization  
or a community, defines a supersystem. If we assume that the members of this group share the 
same goals or values, and act cooperatively to reach these goals, then we can interpret this 
supersystem as an agent in its own right: a superagent. Our general conception of how an agent 
functions implies that this superagent too must exhibit cognition: it must process its perceptual 
information in order to decide about the most appropriate action to achieve its goals. The question 
now is in how far such group cognition is different from the cognition of its individual members. 

Collective action is in general physically more powerful than individual action: a hundred 
individuals pushing together can move a much heavier weight than a single individual. However, if 
we assume that all individual agents would react in exactly the same way to the same perceived 
conditions, then the collective would react in the same way as well. The collective decision as to 
what action to perform would therefore be identical to the individual decision. In this case, the 
collective would be just as intelligent as an individual agent: it would lack any group advantage.  

However, different individuals normally have different forms of knowledge or expertise, because 
they underwent different experiences. If we could add all that knowledge together, then the 
collective would know more than any of its members, and be able to make wiser decisions. In that 
case, we may say that it exhibits collective intelligence. The problem, however, is that there is no 
simple and obvious way to “add up” knowledge that is implemented as different neural networks 
residing in independent brains. This is the problem of aggregation of knowledge. 

Reducing errors through aggregation  

The simplest and most common aggregation method for making collective decisions is voting: 
when a choice needs to be made between alternatives, every individual expresses his or her 
preference. The preferences are added up, determining the overall preference for each alternative 
as a percentage of the number of votes. Typically, the option with the highest number of votes is 
then chosen. This method has shortcomings, though, since it can lead to a choice that a majority of 
participants dislike, and since it ignores the contributions of all those whose preference failed to 
get enough votes. 
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A more accurate aggregation method can be used if the decision to be made is quantifiable, i.e. 
when the preferred alternative can be expressed as a number. Examples of such decision problems 
are: how many beans does that jar contain, or how many pounds does that cow weigh? In this 
situation, all individuals propose a number as their best guess. The average of all the numbers is 
then calculated. Perhaps surprisingly, in many cases it turns out that this average is much more 
accurate than any of the individual guesses! 

The explanation is simple: because of limited experience each individual has a certain bias. This 
bias results in an error, i.e. a deviation from the correct number. We will assume, however, that 
these errors are independent, i.e. they are randomly distributed around the correct number. This 
means that the probability of a deviation in one direction (too large) is the same as a deviation in 
the other direction (too small). The different deviations therefore tend to cancel each other out 
when added up to calculate the average. Because of the statistical “law of large numbers”, the 
more people participate in the guessing, the more “canceling” occurs, and therefore the closer the 
average guess will approximate the correct number.  

Example: This principle can be illustrated by a simulation made by Norman Johnson: different 
software agents explore a maze (labyrinth) until they find the exit. They are programmed to 
remember the overall shortest path they found, i.e. which option to choose at each intersection of 
routes (excluding the detours they made that only brought them back to the initial path). The 
chosen option gets a preference of 1; the other options get a preference of 0. All preferences of all 
agents for each intersection are then added up or averaged, defining a collective preference for 
each option at each intersection. A new path is constructed that takes the option with the highest 
collective preference at each intersection. It turns out that this “collective” path is shorter than any 
of the individually found paths. This is because for individual paths remaining deviations from the 
shortest possible paths are as likely to be in the one direction as in the other. Therefore, these 
deviations tend to cancel each other out when the preferences are averaged.  

Limitations on collective intelligence 

This aggregation mechanism will not eliminate errors or biases that go in the same direction, 
because then the errors accumulate instead of canceling each other out. This can have several 
possible reasons. 

1) agents have similarly biased experiences 

Example: all farmers at a fair tend to underestimate the weight of a cow because they only have 
experience with sheep. 

In this case the collective (aggregated) guess is as good as the average individual guess, but worse 
than the best individual guesses. The collective is neither more stupid nor more intelligent than a 
randomly chosen individual. 
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2) the group is influenced by the same agents 

Example: some agents are allowed to argue why a particular alternative is the best one. The others 
listen, and base their choice on what they heard the speakers say. If the speakers are randomly 
chosen, and the listeners are equally affected by each speaker, the collective decision will represent 
the opinions only of the speakers. This is better than the average individual decision, but worse 
than the decision where all agents vote independently, because the group whose opinion is taken 
into account is smaller.  

If the speakers are experts on the issue, the result is not necessarily better, because experts are 
more likely to have similar biases rather than independent ones. If the experts’ biases are 
independent of each other, the errors they make are likely to be smaller. In that case, the result is 
likely to be more accurate than when the speakers are not experts, but not generally more accurate 
than when everybody can vote independently. Even though this includes bigger individual errors, 
this also produces more error canceling. For example, in the Johnson simulation, averaging the 
votes of only the best performing agents (“experts”) does not improve the overall quality of the 
decision.  

Collective stupidity 

In some cases, the collective decision is worse than the majority decision or even the worst of 
individual decisions. This phenomenon is called groupthink [Janis]: the group converges on a 
poor solution, without anyone daring to criticize it, because everyone thinks the others all agree 
with it.  

Possible mechanism: opinions are expressed in a certain order, e.g. alphabetically, randomly, or 
the most “expert” group members first. Since every listener is influenced by the previous speakers, 
new speakers will tend to confirm what those before them said. If several speakers have all more 
or less said the same, further speakers become increasingly unlikely to express an opinion 
deviating from the previous ones. Therefore, the opinion expressed most often in the beginning 
tends to become dominant, especially if the first speakers were “experts” or authorities. If this 
opinion was very inaccurate, the collective decision will also be inaccurate.  

An even worse situation occurs with polarization. Assume that the group needs to choose an 
option ranging between two extremes (poles), e.g. “let's bomb country X”, “let's make peace with 
country X”. Individually, each member may prefer some intermediate solution because he feels 
rather uncertain about what to do, e.g. “let's embargo country X while negotiating with them”. 
Assume now that the first speakers tend more to the one extreme (e.g. “let's bomb”). This will 
influence further speakers to express arguments supporting this extreme. As more and more 
speakers all add arguments for the same type of approach, everyone feels more encouraged to 
support that approach, and thus potentially receive recognition from the others. Thus, the group 
may take a final decision much more extreme or risky than any member would have chosen 
individually. The reason is that they all think: “well, I may have been uncertain, but everybody 
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else seems to support this option, so I can safely go along with them”. This phenomenon may 
explain some catastrophic decisions made by committees, such as the invasion of Iraq by the US. 

Conclusion: requirements for collective intelligence 

According to Surowiecki [2004], the requirements for a group of people to exhibit collective 
intelligence (or wisdom of crowds, as he calls it) are the following: 

• Diversity: the more diverse the knowledge and experience possessed by the different 
members of the group, the less they are likely to overlook certain aspects, or fall prey to 
particular biases, and therefore the better their collective judgment can be. 

• Independence: individuals should express their opinion independently from other 
members of the group; otherwise, when the opinion of the one is influenced by the opinion 
of the other, biases can get reinforced, resulting in groupthink and collective stupidity 

• Decentralization: this feature supports diversity and independence; the idea is that people 
should as much as possible be able to gather their information independently, that is, 
exhibit a division of cognitive labor, so that they can together cover an as wide range of 
situations as possible. 

• Aggregation: collective intelligence requires an effective mechanism, such as voting, 
averaging or discussion, for aggregating a diversity of individual opinions into a single, 
collective decision. 

The last requirement, aggregation, is the least obvious, since there exist many conceivable ways to 
integrate information from different sources into a single conclusion. The apparently best method, 
averaging, only works for quantitative decisions. Some of the most common methods, such as 
discussion in committees, do not obey the criteria of independence and decentralization, and 
therefore may lead to poor results. However, without aggregation there is no collective decision, 
and therefore a cognitive superagent may need to use less than optimal methods to reach a decision 
if no simple alternative is available. The next sections will discuss some aggregation mechanisms 
that exist in the real world of interacting agents—rather than in the ideal situation where a 
computer calculates the average of many independent estimates. 

Meme propagation 

Knowledge may also be constructed by a collective without aggregation of opinions that are 
expressed in parallel. Aggregation can happen sequentially: each individual in a chain or sequence 
adds something to a piece of information that is being transmitted from the one to the next. This is 
an aggregation mechanism that obviously ignores the requirement of independence, and therefore 
its results will exhibit specific biases. We will call such a piece of information that is being 
transmitted from individual to individual a meme. 
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Suppose that A has some knowledge (e.g. a new idea or something he perceived or read) that 
others don't have. A tells the information to B, B tells it to C, C to D, etc. Such sequential 
propagation will tend to influence the information being passed on. Each new version is slightly 
different from the previous one (variation). Some existing or new elements are more likely to be 
transmitted than others, e.g. elements that are interesting, or that confirm the hearer's prejudices or 
own observations. Other elements are more likely to be left out, e.g. elements that are difficult to 
understand or express, or that seem contradictory with experience. This constitutes a natural 
selection of the information propagating across a chain of individuals. As a result of such 
evolutionary dynamics, after many transmission processes the information may well have changed 
beyond recognition. This change is biased in particular directions, however, and as such to some 
degree predictable. 

The most obvious case of bias is when the meme becomes a myth or legend, i.e. something that 
appears like knowledge but that has no practical use or foundation in the real world. An example is 
the “Mozart effect”: the belief that babies become smarter if they listen to classical music. There is 
no scientific basis for this assertion. The origin is a newspaper report of an experiment in which 
adults scored temporarily better on some psychological tests after listening to classical music 
(perhaps just because it is relaxing). After several retellings in which one journalist quoted or 
paraphrased another one, temporary improvement in scores has become permanently increased 
intelligence, while adults have become children and finally babies. Other examples are the 
different “urban legends”: spectacular stories that are being told and retold as if they really 
happened, but for which no evidence can be found. Examples are the man who found a dead rat in 
the cola bottle he has just been drinking from, or gangs that specialize in drugging their victims, 
after which they steal a kidney to sell on the black market for organs. 

Such biased construction processes are not necessarily negative, though. In some cases, a 
collective decision needs to be made for which there is no objective basis, because no option if 
objectively “better” than any other. This is the case for conventions, where everyone needs to 
agree about doing things in a certain way in order to facilitate communication or coordination, but 
the different ways are essentially equivalent. A meme may thus evolve into a standard that is 
accepted by the whole group, e.g. a symbol for a particular shared concept, such as the word 
“dog”, or the convention that you should drive on the right (or left) side of the road.  

While common, such strong biases are not the general rule. Memes can also evolve without losing 
their basis in reality. This happens typically when the observation that inspired the meme is easy to 
repeat. In that case, the culturally transmitted version is regularly confronted with the original 
evidence, so that it cannot deviate too much from that original.  In that case, the meme may 
become a shared piece of “common sense” knowledge. An example is the idea that lions are 
dangerous.  Most people have not been attacked by lions, and therefore know this only through 
hearsay. However, from time to time, someone witnesses an attack by a lion, thus being able to 
compare the meme with reality, correcting the meme if necessary. 
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What type of information propagates well (is a good meme) depends on a variety of criteria, some 
increasing the quality of the information, some likely to decrease it. We will here list some 
common properties of a meme that will increase its probability of propagating well. To illustrate 
their concrete meaning, we will use an example of an extremely successful meme, i.e. a piece of 
knowledge that about everybody knows, namely the rule which states that pregnancy lasts 9 
months. 

Objective criteria 

• Distinctiveness: information that refers to something precise, distinct or detailed, can be 
confirmed more easily by observation than vague or fuzzy statements. It therefore appears 
a priori more reliable.  
For example, the obervation that a pregnancy lasts 9 months will be taken more seriously 
than the observation that a pregnancy lasts somewhat less than a year, even though this 
latter version is less likely to be incorrect in any particular case. 

• Invariance: information that remains valid over a wide range of contexts or situations is 
more stable and broadly applicable. It will therefore be remembered more easily.  
For example, the duration of 9 months is applicable to practically all human pregnancies. 
The observation that first pregnancies tend to last slightly longer applies to a much smaller 
number of cases, and is therefore a priori a less universally valid piece of knowledge.  

• Evidence: information that is supported by many independent observations is more 
reliable. Each time a meme is confirmed by a new piece of evidence, it becomes more 
plausible.  
Each time you hear about someone’s pregnancy lasting about 9 months, the “9 month” 
rule will become more strongly established in your mind. 

Subjective criteria 

• Utility: information that is valuable or useful to its carrier is more likely to be remembered 
and passed on.  
Knowing how long a pregnancy lasts is extremely important for all expecting mothers, 
fathers, and family members. Therefore, they will be motivated to seek out, remember and 
communicate any information in this regard. 

• Affectivity: information that provokes strong emotions is more likely to be remembered 
and passed on. Emotion here refers to instinctive reactions, such as fear, desire or disgust 
(Heath, Bell & Stenberg, 2001), without need for reflection.  
Pregnancy is biologically an extremely important state, which is accompanied by very 
strong emotions including hope and fear about the outcome. Therefore, all information 
concerning this state will have an immediate impact on the mind. 



- 130 - 

• Coherence: the better information fits in with the knowledge that individuals already have, 
the more easily they will understand and accept it (Thagard, 1998).  
The 9-month rule for pregnancy fits in with our general expectation that difficult, 
important processes require a lot of time. Moreover, the measurement in months fits in 
with our tendency to associate fertility processes with months (approximately the duration 
of a menstrual cycle) rather than with weeks or days. 

• Simplicity: short, simple messages are easier to assimilate, remember and transmit.  
It is easier to remember an estimate of 9 months than the slightly more accurate estimate 
of 266 days.  

• Novelty: information that is unexpected will attract more attention.  
The 9-month rule is so well-known that you will hardly find anybody for whom it is 
unexpected, but you could imagine how impressive it would sound if you would hear for 
the first time that this very complex and individual process always has the exact same 
duration. 

• Repetition: repeated exposure to the same message helps it to be assimilated and retained. 
Family members of pregnant women will hear again and again when the baby is expected 
to be born, so that the 9-month rule is constantly reinforced.  

Intersubjective criteria 

• Publicity: the more effort an individual puts into spreading a message, the more people 
will receive it. 
Family members of pregnant women will not only repeatedly hear but also speak about 
when the baby is expected. 

• Formality: messages formulated explicitly and unambiguously are less likely to be 
misinterpreted. 
Since this rule is independent of particular contexts, it is hardly possible to misinterpret the 
statement that there is a 9-month period between conception and birth. 

• Expressivity: information must be easy to express in a given language or medium. 
Thanks to the existence of common words like “pregnancy”, “duration” and “month”, the 
rule is very easy to formulate in such a way that everybody understands it. Imagine instead 
having to say “the gestation period is equivalent to 9 menstrual cycles”… 

• Authority: an authoritative, trustworthy source of the information makes it more likely to 
be accepted. 
The 9-month rule is confirmed by medical specialists, handbooks and encyclopedias. 

• Conformity: information confirmed by more people is more easily accepted (Boyd & 
Richerson, 1985). The larger the majority of people that agree with a meme, the more 
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difficult it will be for anybody to hold on to a “dissident” view. 
Everybody around will constantly remind you that a pregnancy lasts 9 months, and you 
will not find any truly divergent opinions. 

• Collective utility: information, if adopted by a group, may help the group to function 
better, independently of its individual utility. Examples of such collectively useful memes 
are standards, linguistic conventions, and traffic rules: these only become useful if many 
people apply them. 
The 9-month rule uses the implicit convention that pregnancy starts with conception (and 
e.g. not with the first missed menstruation). This makes it easier for pregnant women, 
doctors and hospitals to coordinate the follow-up of the pregnancy, since they will a priori 
all agree on what e.g. “the sixth month” refers to. 

 

A cognitive interpretation of memetic criteria 

Most of these criteria can be derived directly from our connectionist model of individual cognition. 
The principle that knowledge is learned through reinforcement implies that: 

• useful information will be reinforced or rewarded each time it is applied (and a reward 
will be anticipated when it has not been applied yet) 

• information that triggers emotions will elicit stronger activation and therefore be 
registered more strongly in memory 

• repeated information will be reinforced with each repetition and therefore be better 
remembered 

• similarly, information confirmed by many individuals (conformity) is better remembered 

• information with independent evidence will not only be reinforced each time a bit of 
evidence is encountered, but different types of evidence will reinforce different 
associations in the neural network, thus “grounding” the information more broadly and 
deeply in the cognitive system 

The mechanism of spreading activation implies that: 

• complex messages activate many different nodes, and require several steps of processing 
via propagation across related nodes. This activation will therefore diffuse or dissipate 
more easily than the one created by simple messages that activate just a few nodes and 
links.  

• distinct, detailed perceptions create strong patterns of activation that more easily lead to 
clear, focused conceptions 
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The importance of anticipation explains that: 

• invariant information allows anticipation in a much wider range of situations. It is 
therefore intrinsically more useful and more likely to be confirmed by evidence. 

• novel, unexpected messages elicit special attention and a quick registration in memory, 
because they contradict implicit anticipations, and therefore indicate potentially important 
shortcomings of the cognitive system 

• incoherent messages do not fit in with the existing cognitive structures. They are 
therefore difficult to understand, to associate with existing knowledge, to learn and to 
remember 

• when people repeatedly express true messages, we expect their next message to be true as 
well. Therefore we start to trust them, giving them an aura of authority or trustworthiness 

The remaining criteria depend on the inter-individual communication media of language and social 
structure, which we will now examine a little more closely. 

Distributed cognition 

Communication networks 

Information can travel both sequentially (from person to person) and in parallel (several messages 
reaching the same person more or less simultaneously or being sent by the same person). 
Information can travel between agents, but also between agents and objects (e.g. books, 
computers), and even between objects without human intervention (e.g. from computer to 
computer via the network). Agents and objects that contain information can be seen as nodes in a 
network. Objects are passive: they store the information, but don't change it. Agents are active: 
they to some degree change the information (if only by deciding to pass it on or not). 

Nodes are connected or linked if information frequently passes from the one to the other. The 
strength of the link is the degree to which the information transmitted across this link will tend to 
be accepted. It represents the trust that the receiver has in the sender. Each time a message is 
successfully sent across a link (i.e. the receiver accepts it), the link is strengthened, because the 
receiver gets more trust in the sender. This mechanism is similar to Hebbian learning in a 
connectionist network.  

The network of trust links between agents is equivalent to a social network. Trusted senders are 
“friends” of the receiver. Close friends are trusted more than superficial acquaintances. Such a 
network is analogous to a neural network, and therefore in principle able to process complex 
information in an adaptive way. Information or "memes" transmitted along the network follow a 
pattern of spreading activation: each agent that assimilates a meme is "activated". The strength of 
this activation will depend on:  
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• the strength (fitness) of the incoming meme (how well it satisfies the selection criteria),  

• the number of incoming links along which it arrives 

• the strength of these links (how much the receiver trusts the senders) 

Stronger activation of an agent means that this agent becomes more likely or more active in 
transmitting this meme to his acquaintances. Activation can also be negative, when the message 
transmitted contradicts a meme received earlier, thus inhibiting its further transmission. Different 
memes that mutually confirm or support each other, when reaching the same agent, may be 
aggregated by that agent into a "synthetic" meme that is transmitted as a whole to further agents.   

This "connectionist" interpretation of meme propagation across a social network appears like a 
complex but inspiring model for distributed cognition. It deserves to be explored in much more 
depth. Applying these ideas, my colleague Frank Van Overwalle has already implemented a 
simulation of agents exchanging information in this way [Van Overwalle & Heylighen, 2006]. 
While sticking to relatively simple situations, this simulation managed to accurately reproduce the 
results of various classic experiments in social psychology, which investigated how people process 
information collectively.  

Division of Labor 

In society, each individual specializes in a particular domain: the domain in which the person has 
most experience (typically because the person has been most active in that domain). This implies a 
self-reinforcing dynamic: an agent more active in the domain gathers more experience and 
therefore becomes better at solving problems in that domain; therefore, the agent will tend to take 
on more problems in that domain, and thus gather further experience [Gaines]. By becoming an 
expert, the individual may come to possess some unique (or nearly unique) knowledge. Therefore, 
there is little or no competition for that individual's services, and the individual can earn more 
money from his expertise.  

The more specialized individuals are, the more diverse knowledge there is in the society. If 
everybody had the same experience (e.g. all farmers), they would all have the same limited amount 
of knowledge K. If N people had completely different, non-overlapping knowledge, the total 
knowledge available in the group would be N × K. This explains in part why there is much more 
knowledge in an advanced, postindustrial society than in an agricultural society. 

However, individuals still need to be able to communicate. This implies that at least part of their 
knowledge (language, conventions, common sense, ...) should overlap between groups of 
individuals or be shared by all. Otherwise they cannot understand, or trust each other, and no 
cooperation is possible. Moreover, it is good to have some overlap in expertise for redundancy: if 
one expert is not available, another should be able to replace him. Also, different experts on the 
same subjects are likely to have somewhat different biases and experiences, so that the one can 
correct for the errors of the other, and their collective decisions are more reliable.  
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In an ideal society, knowledge would be distributed in the most efficient way, so that as much as 
possible useful expertise is present, easy to locate, and reliable or robust. Yet, agents can still 
easily communicate and exchange their knowledge so that anyone can get any information he may 
need. 

Stigmergy 

In addition to social networks, there is another mechanism to easily get the right information to the 
right person: stigmergy. With stigmergy, information is exteriorized and stored in a commonly 
accessible medium. When another agent browses through that medium, he will recognize the 
information that is relevant to him, and act on it, e.g. using a condition-action rule. The stored 
information forms a stimulus (“stigma”) that entices the agent to perform work (“ergon”) on it. 
This changes the externally stored information so that it fulfils different conditions. That may 
trigger another agent to recognize it and act upon it.  

In this way several “specialists” with their own condition-action rules may collaborate on a shared 
external memory: 

• without need for coordination between their actions 

• without need for the agents to know each other or their specific expertise 

• without need for a particular order or sequence in which the agents consider the 
information 

Example: people collaborate on a page in Wikipedia (freely editable web encyclopedia). People 
tend to read pages on subjects they are interested in, and therefore tend to have some expertise in, 
e.g. Belgian football, cognition, butterflies, ... When they notice that something in the page is 
missing or incorrect, they are inclined to edit the page so as to add the missing information. Since 
many people read these pages, many people with diverse expertise will add to the knowledge in 
them. As a result a typical Wikipedia page will contain a wealth of relevant information with little 
or no errors. This appears like a rather effective method for aggregating the knowledge of diverse 
individuals into a single description. It must be noted that this aggregation does not fulfill the strict 
criterion of independence, though, since later contributors will be influenced by what previous 
contributors have written. On the other hand, the interaction between contributors is much more 
indirect than in a face-to-face discussion, and therefore the risk for groupthink seems to be much 
smaller. 

Example: termites collaborate on building a termite hill. Initially, individual termites drop some 
mud randomly. When another termite perceives a heap of mud (condition), it tends to add its own 
mud to it (action). In this way initially small heaps grow into towering columns that touch each 
other. 
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Example: ants collaborate on mapping their surroundings. When an ant finds foods it leaves 
pheromone marks on its way back to the nest. When another ant comes out of the nest, it tends to 
follow an existing pheromone trail. The stronger the trail, the stronger the probability that it is 
followed. Yet, there is also a small probability for the ant to deviate and leave the trail, thus 
possibly finding a new source of food. When the ant comes back with food, it adds pheromone to 
the existing trail thus making it stronger. This increases the probability that subsequent ants would 
follow this same trail. If the food source is exhausted, the pheromone trail is no longer reinforced 
and gradually evaporates. After a while, a complex network of trails is formed, connecting the nest 
to the different sources of food in the most efficient way. This network functions like a collective, 
external memory for the ant colony, telling them how and where to find their food.  

Note that this example also does not follow the independence criterion, since later ants are directly 
influenced by the decisions of earlier ants. 

Towards a global brain 

The following methods of distributed information processing should ideally all be integrated: 

• aggregation of diverse opinions into a collective estimate 

• communication via social networks based on trust or acquaintance  

• meme propagation based on the degree of “interestingness” of the message 

• external memories that enable collaborative knowledge improvement via stigmergy 

Together they would form a complex, self-organizing information network, that delivers 
information where it is needed, that processes information so as to improve it, and that creates new 
information based on recombination of ideas. Such a network could be implemented using the 
Internet. For example, social networks are already implemented in systems such as Facebook, 
LinkedIn or Friendster. Stigmergy is already implemented in Wikipedia and similar websites that 
stimulate users to add to the work. Memetic propagation already happens via email forwarding. 
These different systems should further be integrated. For example, interesting emails could 
automatically be forwarded to all friends depending on their degree of interest in the subject and 
trust in the sender. External repositories of information could be linked depending on their mutual 
relevance, so that a person interested in the one, is automatically directed to others that are 
relevant. Collective decisions could be made by aggregating people's preferences, taking into 
account their position in the social network (e.g. giving more authority to people that are trusted by 
many).  

Such developments would lead to a distributed information processing system similar to the brain: 
a “Global Brain” for humanity. There is little doubt that the most important technological, 
economic and social development of the past decades is the emergence of a global, computer-
based communication network. This network has been growing at an explosive rate, affecting—
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directly or indirectly—ever more aspects of the daily lives of the people on this planet. A general 
trend is that the information network becomes ever more global, more encompassing, more tightly 
linked to the individuals and groups that use it, and more intelligent in the way it supports them. 
The web doesn't just passively provide information, it now also actively alerts and guides people to 
the best options for them personally, while stimulating them to share their experience. To support 
this, the web increasingly builds on the knowledge and intelligence of all its users collectively, 
thanks to technologies such as blogs, wikis, ontologies, collaborative filtering, software agents, 
and online markets. It appears as though the net is turning into a nervous system for humanity.  

The “Global Brain” is a metaphor for this emerging, collectively intelligent network that is formed 
by the people of this planet together with the computers, knowledge bases, and communication 
links that connect them together. This network is an immensely complex distributed cognitive 
system. It not only processes information, but increasingly can be seen to play the role of a brain: 
making decisions, solving problems, learning new connections, and discovering new ideas. No 
individual, organization or computer is in control of this system: its knowledge and intelligence are 
distributed over all its components. They emerge from the collective interactions between all 
human and machine subsystems. Such a system may be able to tackle current and emerging global 
problems that have eluded more traditional approaches. Yet, at the same time it will create new 
technological and social challenges that are still difficult to imagine.  
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Conclusion: the new science of the mind 

The origin of cognitive science 

Cognitive science (e.g. Luger, 1994; Bechtel, 1999; Thagard, 2005) studies the functioning of the 
mind. Its history can be seen as a prolonged struggle against dualism and the homunculus view of 
the mind, i.e. against the idea that the mind is a separate, unanalyzable entity, which somehow 
resides inside our brain from where it perceives the world and controls our actions. While this 
view is simple and intuitive, it does not explain anything about how the mind functions: it merely 
attributes mental properties, such as knowledge, intelligence and consciousness, to this 
unspecified, mysterious entity, while leaving us in the dark about the components, processes or 
mechanisms that constitute this entity.  

Philosophy of mind started with the debate between rationalists and empiricists: does our 
knowledge come from internal thoughts (rationalism) or from external observations 
(empiricism)? After several centuries of discussion, the conclusion was that both thinking and 
observing are necessary, and that they interact in complex ways. But philosophy lacked a 
methodology for testing its hypotheses, and therefore its theories remained disparate, subjective 
and vague.  

Psychology turned the study of the mind into a science, by introducing experiments that can be 
used to confirm or refute theoretical hypotheses on the basis of objective data. Initially, this 
experimental approach led to the paradigm of behaviorism, which insisted that theories of 
cognition should deal exclusively with externally observable phenomena: stimuli (initial 
perceptions) and responses (ensuing actions). Mental activity was then reduced to the learning and 
application of associations between stimuli and responses.  

The introduction of computers with their internal memories and processors, however, led to the 
information-processing paradigm: after being perceived, stimuli are internally processed using 
various complex schemas stored in long-term memory. This paradigm can be seen as the proper 
start of cognitive science: the mind has now become a cognitive system, i.e. an analyzable whole 
consisting of connected components that process informational input and transform it into 
observable output. The task now was to specify precisely what these components are, how they are 
connected, and how together they process information. 

Limitations of symbolic cognition 

Initially, the guiding metaphor for analyzing cognitive processes was the manipulation of symbols 
according to a complex program or algorithm. This led to the symbolic paradigm for cognition. Its 
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basic assumption is that knowledge is an abstract, internal representation of the external 
environment. This representation consists of symbols, each representing a particular component or 
aspect of the environmental situation. The task of cognition is to solve problems, in the sense of 
answering questions about that environment. This is done by manipulating the symbols according 
to given inference rules in order to find the combination that best answers the question. The 
symbolic paradigm thus sees abstract reasoning as the essence of cognition. 

The symbolic paradigm was implemented in artificial intelligence (AI), a general approach to the 
simulation of cognitive processes by means of computer programs. However, symbolic AI has 
been much less successful than expected—in particular in terms of reproducing actual human 
performance. In contrast to the logical reasoning of AI programs, people’s reactions are based on 
intuition, which is rooted in their subjective experience of the situation. This makes them much 
more flexible in dealing with complex and unforeseen circumstances. In part as a result of these 
failures, the symbolic view of cognition has come under harsh criticism over the past two decades 
(e.g. Bickhard & Terveen, 1996; Clancey, 1997; Suchman, 1990). It has now been largely 
overtaken by a “new” cognitive science, which is inspired more by the concrete functioning of the 
human mind (biologically, neurologically, psychologically, socially) than by abstract theories of 
logic and computation.  

One fundamental criticism of symbolic theories is that if you try to represent all the relevant 
aspects of the real world with symbols, your representation becomes much too complex to be 
systematically explored by a computer, and a fortiori by the human brain. Indeed, the brain is 
limited by the famous “magical number” (Miller, 1956): not more than about seven items can be 
held simultaneously in working memory. A sufficiently detailed description of a real-world 
situation will typically include hundreds of symbols (words, concepts, features) that can be 
combined in millions of different ways, making it essentially impossible to manipulate these 
symbols in order to systematically explore all their potentially relevant combinations.  

Instead, the brain relies on its long-term memory, which can store millions of facts, to quickly 
recognize patterns in the incoming information. This long-term memory is implemented as a 
network of variable-strength connections between nodes or neurons. Recognized patterns function 
as stimuli that trigger appropriate responses or actions. Unlike a computer program, the neural 
network structure of the brain is very good at fitting fuzzy and ambiguous perceptions into known 
patterns, at learning to recognize recurrent patterns in incomplete and inconsistent data, and at 
associating perceived patterns with appropriate actions. However, it is very poor at simultaneously 
keeping several such patterns actively in mind while reasoning, because the corresponding patterns 
of neural activation tend to interfere with each other. Moreover, activation quickly decays because 
of diffusion and neuronal fatigue.  

Finally, while long-term memory is very effective at recognition, it is rather poor at recall, i.e. 
reviving memory patterns without perceptual stimulation. In that sense, human memory is much 
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less reliable than a computer memory for retrieving a fact outside of the concrete context that 
reminds you of that fact. 

The extended mind 

One of the key insights of the new cognitive science is that cognition is necessarily situated and 
embodied (Clark, 1997, 1999; Clancey, 1997; Anderson & Michael, 2003). This means that a 
cognitive system, such as the human mind, is always interacting with its environmental situation 
via its sensors that perceive, and effectors that produce actions. The complexity of the real world 
is dealt with not by manipulating an abstract internal representation, but by manipulating the world 
itself, i.e. by performing actions and monitoring their results via perceptions. This interaction is 
controlled via sensory-motor feedback:  

 perceptions trigger actions;  

 actions produce changes in the environmental situation;  

 these changes are again perceived,  

 these perceptions trigger new actions to—if necessary—correct or extend the effects of the 
previous actions.  

Different situations will produce different perceptions, and therefore trigger different actions. Both 
cognition and action therefore are situated: they are determined much more by the concrete 
external situation than by internal reasoning or planning (Suchman, 1990; Susi & Ziemke, 2001; 
Clancey, 1997). This shifts most of the burden of memory and reasoning from the brain to the 
environment: instead of having to conceive, predict and remember the potential results of an 
action, the action is simply executed so that its actual results can be read off from the 
environmental situation. 

Actions leave their mark on the environment. Insofar that this mark is made in a stable medium, 
such as stone, paper or silicon, it functions like an objective registration of what has happened, 
storing the information for later review by the brain. In that way, the brain can “offload” 
information and store it in an external memory that is more reliable and less energy consuming 
than its own working memory. In this case, we may say that the mind extends into the physical 
environment (Clark & Chalmers, 1998), or that cognition is distributed across the brain and 
various material supports (Hollan, Hutchins & Kirsh, 2000; Hutchins, 1995). A simple example is 
taking notes. The markings on the paper change as the results of our actions (writing). On the other 
hand, they remain safely stored while we do not interact with the paper. When perceived (read), 
they trigger thoughts and corresponding new actions, such as adding a related item to the list of 
already registered items.  

A useful paradigm to conceptualize the dynamics of such environmentally mediated activity is the 
concept of stigmergy (Parunak, 2006; Susi & Ziemke, 2001; Heylighen, 1999, 2007). An activity 
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is stigmergic if the action by an agent leaves a mark (stigma in Greek) in the environment that 
stimulates an agent (the same or another one) to perform further work (ergon in Greek). This 
subsequent action will leave another mark which in turn will stimulate yet another action. Thus, 
different actions indirectly trigger each other, via the traces they leave in the environment. This 
allows a flexible coordination of the different condition-action rules that govern the agent's 
behavior. Thanks to stigmergy, even the extremely simple reactive agents, which lack a working 
memory, become able to execute complex activities (such as building a nest). 

The mind as a control system 

The environment not only provides a passive medium that registers the effect of actions: it actively 
intervenes in the agent’s activity, producing opportunities to perform new actions or disturbances 
that make the actions’ result deviate from what was intended. In situated cognition, opportunities 
for action created by the presence of specific objects or situations are called affordances (Norman, 
1999). Because our brain has evolved to quickly adapt to its environmental situation, our 
perception is especially tuned to the recognition of both disturbances, that create problems that 
need to be addressed, and affordances, that may help us to solve problems and achieve our goals 
(Gibson, 1986). 

A fundamental paradigm to understand this agent-environment interaction is the cybernetic notion 
of feedback control (Powers, 1973; Heylighen & Joslyn, 2001), which is also known as error-
controlled regulation. A goal-directed agent, such as an ant or a human, tries to achieve its goals by 
eliminating any difference between its present situation (perception) and its desired situation 
(goal). A goal here should not be understood as a completely specified objective or end-state, but 
merely as an (explicit or implicit) preference for certain situations over others. For every perceived 
difference between the present situation and the goal, an action is performed to reduce that 
deviation, i.e. bring the situation closer to the preferred one. If the result as perceived is not 
sufficient, a next action is performed to again bring the situation closer to the goal, and so on, until 
the agent is satisfied.  

Although some actions may be counterproductive (in that they increase the distance to the goal), 
the overall process tends to zoom in efficiently on the goal because of negative feedback: every 
new action tends to correct the errors created or left over by the previous action. External 
disturbances are dealt with in the same way: whatever caused the deviation or error, the system’s 
reaction is to try to maximally reduce it, until there is no deviation left. In that way, the system 
remains in control of the situation, by efficiently counteracting any movement away from its 
desired course of action. In feedback control, there is no need for planning or for complex 
reasoning. This makes the mechanism very robust, and able to deal with the most complex 
circumstances (Gershenson & Heylighen, 2004). 
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The different components of this mind-environment interaction are summarized in the figure. We 
can distinguish two nested levels of mind: 

1) the traditional idea of mind as inherent in the brain;  

2) the “extended mind” which encompasses the brain together with any external 
memories that are used to support information processing. 

In the traditional perspective, external memory is part of the environment. In the cybernetic or 
distributed cognition perspective, however, it is part of the agent, since it is completely 
controlled by the agent. The part of the environment that is not under control—i.e. which does not 
perform merely as the agent expects—intervenes in the agent’s activity via what we have called 
affordances and disturbances. These, together with the feedback received via the environment 
about previous actions and the reminders stored in the external memory, determine the situation as 
perceived by the agent, and therefore the agent’s further actions. 

Anticipation and consciousness 

The main shortcoming of feedback as a method to tackle environmental problems is that the 
reaction to a perceived problem may come too late, when the problem has grown too large or too 
complex to still be corrected by a well-chosen action. Therefore, an essential function of the brain 
is to anticipate, i.e. to conceive potential problems and consequences before the situation has 
become difficult to control, and thus prepare the agent to intervene in the most efficient way.  

In a neural network, anticipation happens automatically thanks to the mechanisms of Hebbian 
learning and spreading activation. Hebbian learning creates or strengthens a connection A → B 
whenever B is experienced in close succession to A. Therefore, neural connections in the brain 
increasingly reflect causal connections in the outside world, so that the strength of the A → B 
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connection becomes an ever more reliable estimate of the probability that A would indeed be 
followed by B. The activation of one or more nodes, representing perceived or conceived 
conditions, automatically propagates along these connections, thus activating or priming the 
conditions that are likely follow. This produces a mental and physical preparedness that helps the 
agent to deal with the situation.  

If such anticipated conditions turn out to be wrong, the cognitive system immediately tries to 
correct its error by focusing the attention on the unexpected phenomenon, so as to gather more 
information. Furthermore, it will weaken to some degree the connections that produced the wrong 
prediction, so that making the same mistake becomes less likely. The focusing of attention implies 
a higher degree of consciousness and arousal. This is typically accompanied by emotions, such as 
joy, fear or surprise, and the creation of a stronger memory trace, e.g. in episodic memory. The 
other major cause of focused attention is a problem that is considered so important that a lot of 
cognitive resources must be devoted to it. This happens by reducing the flow of activation to 
phenomena that seem irrelevant to the focus, potentially “blinding” the mind to things that 
otherwise would certainly be noticed. 

When nothing particularly important or unexpected happens, consciousness is in general more 
diffuse, taking the form of what we have called “subjective experience”. This can be seen as the 
entire state of activation and priming created by a specific situation and the different perceptions 
and conceptions that accompany it. It functions as a general form of mental preparedness. This 
state is unique, personal, essentially context-dependent, and in constant flux. As such it cannot be 
expressed in any formal or symbolic way, e.g. by means of language or logic. This does not mean 
that it must remain forever outside of the domain of science, as some philosophers have argued, 
but only that it cannot be captured by traditional symbolic models of cognition.  

 

Intelligence and its amplification 

Different people differ in the degree to which their brain is good at anticipating and at solving 
problems. This depends partly on the amount of accumulated knowledge and experience 
(crystallized intelligence), partly on the intrinsic efficiency of the processes of spreading 
activation and learning (fluid intelligence). I have hypothesized that the most basic measure of 
fluid intelligence, the g-factor, reflects the number of steps that activation can propagate in the 
brain without losing its initial focus. More steps in a coherent train of thought means anticipation 
of phenomena that are farther in the future, less obviously related to the initial situation, and more 
uncertain. This enables the tackling of more complex, abstract and long-term problems, and 
especially the discovery of more creative or unexpected solutions.  

While fluid intelligence partly depends on the genes, it is also strongly influenced by the support 
and stimulation received from the environment, as illustrated by the ongoing increase in average 
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IQ. This allows us to envisage methods to augment internal intelligence—as a complement to the 
methods discussed earlier that make information processing more effective by extending the mind 
into the environment.  

One very practical application of cognitive science is to make us aware of the in-built limitations 
of our intelligence, or cognitive biases, thus helping us to overcome them. One fundamental 
reason for the existence of such biases is that cognition has evolved to maximize survival and 
growth, thus making us both paranoid (tending to exaggerate external dangers) and optimist 
(tending to exaggerate our own abilities to achieve progress). Another reason is that neural 
networks function through spreading activation. This tends to exaggerate the importance of 
recently activated conceptions and their associations (context) relative to the long-term "base rate" 
frequency of events.  

 A complementary method to increase intelligence and combat individual biases is by aggregating 
the experience of many different individuals. If this is done in a balanced way, e.g. by averaging 
the individual guesses, the result may be called collective intelligence. However, collective 
decisions are often subjected to various social biasing mechanisms, such as a tendency to conform 
to what others say. This may lead to groupthink, where the collective behaves more stupidly than 
the individuals it consists of.  

Information from different individuals is rarely aggregated in a central place, though. It more 
commonly propagates from individual to individual, in the form of communicable ideas or 
“memes”. Good memes should be easy to assimilate, remember, express and transmit, implying 
that they should fit in well both with individual cognitive systems and with social, linguistic and 
technological means of communication. Information will be propagated most reliably along the 
strongest links in a social network, i.e. between the people that best know and trust each other. 
Information can also propagate indirectly, by being stored in a shared medium, such as libraries or 
databases, that many can access. This is a stigmergic form of communication.  

These different mechanisms for the propagation of information in society, such as networks and 
stigmergy, seem remarkably similar to the mechanisms used by the individual brain. This analogy 
becomes stronger with the growing use of electronic networks, which become ever more efficient 
in distributing and processing information. This opens up the perspective of the emergence of an 
unimaginably intelligent distributed cognitive system at the planetary level, i.e. a Global Brain.
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