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The complexity bottleneck

The wave of innovation unleashed by the first user-friendly PCs in the 1980's and the
Web in the 1990's seems to have gotten drowned in complexity and confusion. Software
developers are scrambling to keep their systems up-to-date with all the new standards,
plugins and extensions. While we constantly hear announcements of the most
spectacular innovations, few seem to reach maturity. The problem is that developers
tend to underestimate the complexity of the task environment: today's information
systems depend on so many modules, sources of data, network connections, input and
output devices that it has become impossible to predict or control their interactions.
The result is software full of bugs, corrupted data, security holes, viruses, and other
potentially catastrophic side-effects. Moreover, systems have become so complex that
the human mind simply no longer can learn or remember all procedures needed to use
them. Add to this constant change in hardware, software, protocols, data, and user
expectations, mix well, and you have a recipe for chaos.

The complexity bottleneck not only creates stress and confusion, it severely limits
the speed of further progress. The number of possible interactions grows exponentially
with the number of components. Since components and their capacity increase
exponentially, overall complexity increases super-exponentially. The cognitive capacity
of developers obviously increases at a much slower rate, thus lagging further and further
behind. This means that large projects, such as the Semantic Web, either will get
endlessly delayed, or end up with unworkable products.

We need a radically different approach to overcome this bottleneck. One step
forward is IBM's "autonomic computing” (http://www.research.ibm.com/autonomic/)
initiative. IBM researchers envision systems that function largely independently from
their human supervisors, adapting, correcting and repairing themselves whenever a
problem occurs. IBM's uses the metaphor of the autonomic nervous system, which runs
our body for us without need for conscious intervention. How they hope to achieve this
is less clear, though. Their suggestions seem to center around models of feedback,
adaptation and control first proposed in the 1950's. While we applaud this "cybernetic”
approach to computing, we believe that an even more radical vision is needed: self-
organization.



Self-organizing systems

A self-organizing system not only regulates or adapts its behavior, it creates its own
organization. In that respect it differs fundamentally from our present systems, which
are created by their designer. We define organization as structure with function. Structure
means that the components of a system are arranged in a particular order. It requires
both connections, that integrate the parts into a whole, and separations that differentiate
subsystems, so as to avoid interference. Function means that this structure fulfils a
purpose.

Designers obviously create systems for a particular purpose: the function of a
watch is to tell time, of a database to store data, of a spreadsheet to calculate. But
natural systems have functions too: roots exist to extract nutrients from the soil,
stomachs to digest, eyes to see. In the 18th century, the very sophisticated structures
and functions of living organisms led bishop Paley to argue that they must have an
intelligent designer: God. We now know that no designer is necessary to produce such
intelligent organization: natural systems appear to have emerged and evolved without
outside intervention or programming. Yet, they are incredibly robust, flexible and
adaptive, tackling problems far more complex than any computer system (Kelly, 1994;
Heylighen, 2003).

Self-organization then means that a functional structure appears and maintains
spontaneously. The control needed to achieve this must be distributed over all
participating components. If it was centralized in a subsystem or module, then this
module could in principle be removed and the system would lose its organization. Take
the processor chip out of a computer and it becomes useless. Take any small piece of
tissue out of a living brain (as commonly happens during brain surgery), and the brain
will continue to function more or less like before.

Self-organizing systems are intrinsically robust: they can withstand a variety of
errors, perturbations, or even partial destruction. They will repair or correct most
damage themselves, getting back to their initial state. When the damage becomes too
great, their function will start to deteriorate, but "gracefully”, without sudden
breakdown. They will adapt their organization to any changes in the environment,
learning new "tricks" to cope with unforeseen problems. Out of chaos, they will
generate order. Seemingly random perturbations will help—rather than hinder—them in
achieving an ever better organization.

This description may sound too good to be true. Yet, there are plenty of systems
that exhibit these kinds of qualities. We find them to varying degrees in organisms,
brains, ecosystems, societies, markets, swarms, and dissipative chemical systems.
Computing too offers a few examples. The TCP/IP protocol that underlies the Internet
was designed to be robust enough to maintain communication during a nuclear war. It
achieves this by cutting up messages into packets that are sent via different routes and
reassembling them at the destination—if necessary resending those that got lost. Neural
networks that have learnt to recognize patterns, such as handwriting, still produce
pretty good results when part of their nodes and links are deleted. Genetic algorithms
find solutions to complex problems by "evolving" subsequent generations of possible



solutions (Holland, 1992). They mutate, recombine and reproduce only the best ones,
until a good enough solution is found.

Mechanisms of self-organization

These computing examples show the power of self-organization, but only in very
limited contexts, where both the components and their desired function are well-defined.
How can we apply self-organization to an environment as complex and diverse as the
Web, a corporate Intranet, or even a desktop computer with its ever changing software
and data configuration? To achieve self-organization on that scale, we need a much
deeper insight into how it precisely works (Heylighen 2003). Let us go back to the
systems we find in nature, and analyse their mechanisms in terms general enough to be
applicable to complex information system.

A self-organizing system consists of a large number of interacting components,
such as molecules, neurons, insects or people. The system is dynamic: the components
are constantly changing state relative to each other. But because of mutual dependency
changes are not arbitrary: some relative states are "preferable”, in the sense that they
will be reinforced or stabilized, while others are inhibited or eliminated. For example,
two molecules that approach each other in the right geometrical configuration may react,
forming a chemical bond and thus a larger molecule, or they may simply drift past each
other. Two people discussing may either find common ground and establish a working
relation, or leave in disagreement.

Changes initially are local: components only interact with their immediate
"neighbors”. They are virtually independent of components farther away. But self-
organization is often defined as global order emerging from local interactions. We can
picture this process as follows. Two interacting components pass through a variety of
configurations until they find one that is mutually “satisfactory”, i.e. stable. We might
say that they have adapted to each other, and now fit together. To achieve global order,
this fit must propagate to the other components. For example, two molecules that have
bonded may be joined by a third one, and a fourth one, and so on, eventual forming a
macroscopic crystal. Two people who discovered a common interest may start talking
about this to others, and end up founding a club, political movement, or company. If the
components are interchangeable, like molecules of the same chemical substance, the
resulting structure will be regular, like a crystal. If each components has its own,
individual characteristics, like a species in an ecosystem, the structure will be more
complex: each component has to fit in its own niche within the environment formed by
the others.

This propagation of fit is typically self-reinforcing: additional components join ever
more quickly. The reason is that a larger assembly exerts a stronger attraction on the
remainingindependent components, offering more niches in which they can fit. This
positive feedback produces an explosive growth or reproduction of the assembly.
Growth only stops when the resources are exhausted, that is, when all components that
could be fit into the assembly have been fit. This may happen because the remaining
components are too different to fit in this type of configuration, or because they got



assimilated into a rival assembly. For example, a chess club will stop growing when the
remaining people in town either are not interested in chess, or already belong to a
different chess club.

The assembly has now stabilized and feedback becomes mostly negative. This
means that it will counteract any loss of organization. Self-maintenance has become its
implicit purpose, and each component will perform its function toward this goal. For
example, the rules and individual relationships within an established club make it
difficult for members to switch to a rival club. The assembly asa whole, however, can
still interact with other assemblies, but at a different level. For example, two chess clubs
may engage in an inter-club tournament. Thus, assemblies formed from individual
components start acting like higher level components. These can in turn self-organize
into even higher level components, the way chess clubs may assemble into a federation.
This process continues recursively, for as long as there are components to interact with,
generating ever higher levels of complexity.

The self-organized system is stable or robust, but this does not mean static or rigid.
When the environment changes, the components that directly interact with the
environment, will have to adapt their state, until they are fit again. This fit will
propagate inwards, until the whole assembly is adapted to the new situation. Thus, the
system constantly re-organizes, mutually balancing the different internal and external
pressures for change, while trying to maintain its essential organization. The more
perturbations it encounters, the larger the variety of different configurations it will
explore, and therefore the "better” the eventual solution it settles in. The cyberneticist
von Foerster called this principle "order from noise". The thermodynamicist Prigogine
(1984) called it "order through fluctuations”.

The future of computing?

How can we apply this general vision to information systems? Imagine a variety of
components: hardware and software modules, files, websites, interfaces, users... All
these components interact by exchanging information. Assume that neighboring
components have the capability to mutually adapt: by sending messages back and forth
they negotiate until they achieve a common "understanding”, in which they both can
settle. But coordination does not stop there: it propagates back and forth between all
components, until a globally stable order is created. Any change, such as a newly
introduced component or local breakdown, will restart the negotiation process with its
immediate neigbors. Its effects will ripple further through the neighborhood until this
perturbation too is absorbed, and the system is back to equilibrium. Of course, we will
need to overcome important hurdles before we can achieve this vision. Most obviously,
we must create a universal protocol for interaction that supports unrestricted self-
organization.

This all sounds very general and abstract. Can we think of more concrete
applications? A well-known example of self-organization is the way ants lay trails of
pheromones between various sources of food. Initially, ants explore and leave
pheromones randomly, but “good" trails, that lead to rich sources via quick routes are



reinforced through positive feedback, while poor trails eventually evaporate. Thus, food
sources get organized into a dense and efficient network of foraging paths. Marco
Dorigo, pioneer in the domain of "ant algorithms”, has shown how a similar mechanism
can tackle a variety of computing problems, including the notorious travelling salesman
problem (Bonabeau et al., 1998). An important application is the routing of messages
along the nodes and links of a communication network: efficient routes are reinforced,
less efficient ones abandoned. The resulting organization adapts in real time: if routes
become congested, their priority is immediately downgraded, and new routes are
explored.

One of us has applied a similar idea to the hyperlink organization of the web
(Bollen & Heylighen, 1996; Heylighen & Bollen, 2002). Our learning web algorithms
reinforce paths of links that users travel frequently, eventually replacing them by a
single link. While users decide locally which link to explore next, the effects of their
choice propagate throughout the web. This should eventually lead to a global order:
webpages that "fit" together, in the sense that the one is very relevant for the users of
the other, are linked directly. Thus, documents that cover the same subject get clustered
together. This cluster or assembly can now be represented by a higher level document,
presenting an index or summary for the subject. Higher level components themselves
become linked and clustered in categories and further into supercategories. Eventually,
the web as a whole may self-organize into an efficient, hierarchically structured network
of associations, which adapts continuously to newly introduced documents, changes in
user demand, etc.

With some minor variations, we could apply this scheme to the construction of
shared ontologies, clustering similar concepts into categories, and linking the categories
that are most strongly associated. Object-oriented programming too could profit from
this approach, with objects mutually negotiating message passing protocols, and
spontaneously assembling into higher level objects. (For example, the latter is supported
by the SWARM programming environment, Langton et. al., 1999). The same goes for
ubiquitous computing or intelligent environments: various devices such as fridges,
thermostats, or phones connected to a network can learn to mutually coordinate their
activities, thus minimizing the burden on the user.

The possibilities seem endless. Is this the future of computing? Only time can tell...
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